nmap使用求助
Nmap是一款 *** 扫描和主机检测的非常有用的工具。Nmap是不局限于仅仅收集信息和枚举,同时可以用来作为一个漏洞探测器或安全扫描器。它可以适用于winodws,linux,mac等操作系统
Nmap是一款非常强大的实用工具,可用于:检测活在 *** 上的主机(主机发现)检测主机上开放的端口(端口发现或枚举)检测到相应的端口(服务发现)的软件和版本检测操作系统,硬件地址,以及软件版本检测脆弱性的漏洞(Nmap的脚本)Nmap是一个非常普遍的工具,它有命令行界面和图形用户界面。本人包括以下方面的内容:介绍Nmap扫描中的重要参数操作系统检测Nmap使用教程Nmap使用不同的技术来执行扫描,包括:TCP的connect()扫描,TCP反向的ident扫描,FTP反弹扫描等。所有这些扫描的类型有自己的优点和缺点,我们接下来将讨论这些问题。 Nmap的使用取决于目标主机,因为有一个简单的(基本)扫描和预先扫描之间的差异。我们需要使用一些先进的技术来绕过防火墙和入侵检测/防御系统,以获得正确的结果。下面是一些基本的命令和它们的用法的例子:扫描单一的一个主机,命令如下:
代码如下:
#nmap nxadmin.com#nmap 192.168.1.2
扫描整个子网,命令如下:
代码如下:
#nmap 192.168.1.1/24
扫描多个目标,命令如下:
代码如下:
#nmap 192.168.1.2 192.168.1.5
扫描一个范围内的目标,如下:
代码如下:
#nmap 192.168.1.1-100 (扫描IP地址为192.168.1.1-192.168.1.100内的所有主机)
如果你有一个ip地址列表,将这个保存为一个txt文件,和namp在同一目录下,扫描这个txt内的所有主机,命令如下:
代码如下:
#nmap -iL target.txt
如果你想看到你扫描的所有主机的列表,用以下命令:
代码如下:
#nmap -sL 192.168.1.1/24
扫描除过某一个ip外的所有子网主机,命令:
代码如下:
#nmap192.168.1.1/24-exclude192.168.1.1
扫描除过某一个文件中的ip外的子网主机命令
代码如下:
#nmap192.168.1.1/24-excludefilexxx.txt(xxx.txt中的文件将会从扫描的主机中排除)
扫描特定主机上的80,21,23端口,命令如下
代码如下:
#nmap-p80,21,23192.168.1.1
从上面我们已经了解了Nmap的基础知识,下面我们深入的探讨一下Nmap的扫描技术
Tcp SYN Scan (sS) 这是一个基本的扫描方式,它被称为半开放扫描,因为这种技术使得Nmap不需要通过完整的握手,就能获得远程主机的信息。Nmap发送SYN包到远程主机,但是它不会产生任何会话.因此不会在目标主机上产生任何日志记录,因为没有形成会话。这个就是SYN扫描的优势.如果Nmap命令中没有指出扫描类型,默认的就是Tcp SYN.但是它需要root/administrator权限.
代码如下:
#nmap -sS 192.168.1.1
Tcp connect() scan(sT)如果不选择SYN扫描,TCP connect()扫描就是默认的扫描模式.不同于Tcp SYN扫描,Tcp connect()扫描需要完成三次握手,并且要求调用系统的connect().Tcp connect()扫描技术只适用于找出TCP和UDP端口.
代码如下:
#nmap -sT 192.168.1.1
Udp scan(sU)顾名思义,这种扫描技术用来寻找目标主机打开的UDP端口.它不需要发送任何的SYN包,因为这种技术是针对UDP端口的。UDP扫描发送UDP数据包到目标主机,并等待响应,如果返回ICMP不可达的错误消息,说明端口是关闭的,如果得到正确的适当的回应,说明端口是开放的.
代码如下:
#nmap -sU 192.168.1.1
FINscan(sF)
有时候TcpSYN扫描不是更佳的扫描模式,因为有防火墙的存在.目标主机有时候可能有IDS和IPS系统的存在,防火墙会阻止掉SYN数据包。发送一个设置了FIN标志的数据包并不需要完成TCP的握手.
代码如下:
a href="mailto:root@bt:~#nmap-sF192.168.1.8"root@bt:~#nmap-sF192.168.1.8/a/p pStartingNmap5.51at2012-07-0819:21PKTNmapscanreportfor192.168.1.8Hostisup(0.000026slatency).Notshown:999closedportsPORTSTATESERVICE111/tcpopen|filteredrpcbind
FIN扫描也不会在目标主机上创建日志(FIN扫描的优势之一).个类型的扫描都是具有差异性的,FIN扫描发送的包只包含FIN标识,NULL扫描不发送数据包上的任何字节,XMAS扫描发送FIN、PSH和URG标识的数据包.
PINGScan(sP)
PING扫描不同于其它的扫描方式,因为它只用于找出主机是否是存在在 *** 中的.它不是用来发现是否开放端口的.PING扫描需要ROOT权限,如果用户没有ROOT权限,PING扫描将会使用connect()调用.
代码如下:
#nmap-sP192.168.1.1
版本检测(sV)
版本检测是用来扫描目标主机和端口上运行的软件的版本.它不同于其它的扫描技术,它不是用来扫描目标主机上开放的端口,不过它需要从开放的端口获取信息来判断软件的版本.使用版本检测扫描之前需要先用TCPSYN扫描开放了哪些端口.
代码如下:
#nmap-sV192.168.1.1
Idlescan(sL)
Idlescan是一种先进的扫描技术,它不是用你真实的主机Ip发送数据包,而是使用另外一个目标 *** 的主机发送数据包.
代码如下:
#nmap-sL192.168.1.6192.168.1.1
Idlescan是一种理想的匿名扫描技术,通过目标 *** 中的192.168.1.6向主机192.168.1.1发送数据,来获取192.168.1.1开放的端口
有需要其它的扫描技术,如FTPbounce(FTP反弹),fragmentationscan(碎片扫描),IPprotocolscan(IP协议扫描),以上讨论的是几种最主要的扫描方式.
Nmap的OS检测(O)
Nmap最重要的特点之一是能够远程检测操作系统和软件,Nmap的OS检测技术在渗透测试中用来了解远程主机的操作系统和软件是非常有用的,通过获取的信息你可以知道已知的漏洞。Nmap有一个名为的nmap-OS-DB数据库,该数据库包含超过2600操作系统的信息。Nmap把TCP和UDP数据包发送到目标机器上,然后检查结果和数据库对照。
代码如下:
InitiatingSYNStealthScanat10:21Scanninglocalhost(127.0.0.1)[1000ports]Discoveredopenport111/tcpon127.0.0.1CompletedSYNStealthScanat10:21,0.08selapsed(1000totalports)InitiatingOSdetection(try#1)againstlocalhost(127.0.0.1)RetryingOSdetection(try#2)againstlocalhost(127.0.0.1)
上面的例子清楚地表明,Nmap的首次发现开放的端口,然后发送数据包发现远程操作系统。操作系统检测参数是O(大写O)
Nmap的操作系统指纹识别技术:
设备类型(路由器,工作组等)运行(运行的操作系统)操作系统的详细信息(操作系统的名称和版本) *** 距离(目标和攻击者之间的距离跳)
如果远程主机有防火墙,IDS和IPS系统,你可以使用-PN命令来确保不ping远程主机,因为有时候防火墙会组织掉ping请求.-PN命令告诉Nmap不用ping远程主机。
代码如下:
#nmap-O-PN192.168.1.1/24
以上命令告诉发信主机远程主机是存活在 *** 上的,所以没有必要发送ping请求,使用-PN参数可以绕过PING命令,但是不影响主机的系统的发现.
Nmap的操作系统检测的基础是有开放和关闭的端口,如果OSscan无法检测到至少一个开放或者关闭的端口,会返回以下错误:
代码如下:
Warning:OSScanresult *** aybeunreliablebecausewecouldnotfindatleast1openand1closedport
OSScan的结果是不可靠的,因为没有发现至少一个开放或者关闭的端口
这种情况是非常不理想的,应该是远程主机做了针对操作系统检测的防范。如果Nmap不能检测到远程操作系统类型,那么就没有必要使用-osscan_limit检测。
想好通过Nmap准确的检测到远程操作系统是比较困难的,需要使用到Nmap的猜测功能选项,–osscan-guess猜测认为最接近目标的匹配操作系统类型。
代码如下:
#nmap-O--osscan-guess192.168.1.1
下面是扫描类型说明
-sTTCPconnect()扫描:这是最基本的TCP扫描方式。connect()是一种系统调用,由操作系统提供,用来打开一个连接。如果目标端口有程序监听,connect()就会成功返回,否则这个端口是不可达的。这项技术更大的优点是,你勿需root权限。任何UNIX用户都可以自由使用这个系统调用。这种扫描很容易被检测到,在目标主机的日志中会记录大批的连接请求以及错误信息。
-sSTCP同步扫描(TCPSYN):因为不必全部打开一个TCP连接,所以这项技术通常称为半开扫描(half-open)。你可以发出一个TCP同步包(SYN),然后等待回应。如果对方返回SYN|ACK(响应)包就表示目标端口正在监听;如果返回RST数据包,就表示目标端口没有监听程序;如果收到一个SYN|ACK包,源主机就会马上发出一个RST(复位)数据包断开和目标主机的连接,这实际上有我们的操作系统内核自动完成的。这项技术更大的好处是,很少有系统能够把这记入系统日志。不过,你需要root权限来定制SYN数据包。
-sF-sX-sN秘密FIN数据包扫描、圣诞树(XmasTree)、空(Null)扫描模式:即使SYN扫描都无法确定的情况下使用。一些防火墙和包过滤软件能够对发送到被限制端口的SYN数据包进行监视,而且有些程序比如synlogger和courtney能够检测那些扫描。这些高级的扫描方式可以逃过这些干扰。些扫描方式的理论依据是:关闭的端口需要对你的探测包回应RST包,而打开的端口必需忽略有问题的包(参考RFC793第64页)。FIN扫描使用暴露的FIN数据包来探测,而圣诞树扫描打开数据包的FIN、URG和PUSH标志。不幸的是,微软决定完全忽略这个标准,另起炉灶。所以这种扫描方式对Windows95/NT无效。不过,从另外的角度讲,可以使用这种方式来分别两种不同的平台。如果使用这种扫描方式可以发现打开的端口,你就可以确定目标注意运行的不是Windows系统。如果使用-sF、-sX或者-sN扫描显示所有的端口都是关闭的,而使用SYN扫描显示有打开的端口,你可以确定目标主机可能运行的是Windwos系统。现在这种方式没有什么太大的用处,因为nmap有内嵌的操作系统检测功能。还有其它几个系统使用和windows同样的处理方式,包括Cisco、BSDI、HP/UX、MYS、IRIX。在应该抛弃数据包时,以上这些系统都会从打开的端口发出复位数据包。
-sPping扫描:有时你只是想知道此时 *** 上哪些主机正在运行。通过向你指定的 *** 内的每个IP地址发送ICMPecho请求数据包,nmap就可以完成这项任务。如果主机正在运行就会作出响应。不幸的是,一些站点例如:microsoft.com阻塞ICMPecho请求数据包。然而,在默认的情况下nmap也能够向80端口发送TCPack包,如果你收到一个RST包,就表示主机正在运行。nmap使用的第三种技术是:发送一个SYN包,然后等待一个RST或者SYN/ACK包。对于非root用户,nmap使用connect() *** 。在默认的情况下(root用户),nmap并行使用ICMP和ACK技术。注意,nmap在任何情况下都会进行ping扫描,只有目标主机处于运行状态,才会进行后续的扫描。如果你只是想知道目标主机是否运行,而不想进行其它扫描,才会用到这个选项。
-sUUDP扫描:如果你想知道在某台主机上提供哪些UDP(用户数据报协议,RFC768)服务,可以使用这种扫描 *** 。nmap首先向目标主机的每个端口发出一个0字节的UDP包,如果我们收到端口不可达的ICMP消息,端口就是关闭的,否则我们就假设它是打开的。有些人可能会想UDP扫描是没有什么意思的。但是,我经常会想到最近出现的solarisrpcbind缺陷。rpcbind隐藏在一个未公开的UDP端口上,这个端口号大于32770。所以即使端口111(portmap的众所周知端口号)被防火墙阻塞有关系。但是你能发现大于30000的哪个端口上有程序正在监听吗?使用UDP扫描就能!cDcBackOrifice的后门程序就隐藏在Windows主机的一个可配置的UDP端口中。不考虑一些通常的安全缺陷,一些服务例如:snmp、tftp、NFS使用UDP协议。不幸的是,UDP扫描有时非常缓慢,因为大多数主机限制ICMP错误信息的比例(在RFC1812中的建议)。例如,在Linux内核中(在net/ipv4/icmp.h文件中)限制每4秒钟只能出现80条目标豢纱锏肾CMP消息,如果超过这个比例,就会给1/4秒钟的处罚。solaris的限制更加严格,每秒钟只允许出现大约2条ICMP不可达消息,这样,使扫描更加缓慢。nmap会检测这个限制的比例,减缓发送速度,而不是发送大量的将被目标主机丢弃的无用数据包。不过Micro$oft忽略了RFC1812的这个建议,不对这个比例做任何的限制。所以我们可以能够快速扫描运行Win95/NT的主机上的所有65K个端口。
-sAACK扫描:这项高级的扫描 *** 通常用来穿过防火墙的规则集。通常情况下,这有助于确定一个防火墙是功能比较完善的或者是一个简单的包过滤程序,只是阻塞进入的SYN包。这种扫描是向特定的端口发送ACK包(使用随机的应答/序列号)。如果返回一个RST包,这个端口就标记为unfiltered状态。如果什么都没有返回,或者返回一个不可达ICMP消息,这个端口就归入filtered类。注意,nmap通常不输出unfiltered的端口,所以在输出中通常不显示所有被探测的端口。显然,这种扫描方式不能找出处于打开状态的端口。
-sW对滑动窗口的扫描:这项高级扫描技术非常类似于ACK扫描,除了它有时可以检测到处于打开状态的端口,因为滑动窗口的大小是不规则的,有些操作系统可以报告其大小。这些系统至少包括:某些版本的AIX、Amiga、BeOS、BSDI、Cray、Tru64UNIX、DG/UX、OpenVMS、DigitalUNIX、OpenBSD、OpenStep、QNX、Rhapsody、SunOS4.x、Ultrix、VAX、VXWORKS。从nmap-hackers邮件3列表的文档中可以得到完整的列表。
-sRRPC扫描。这种 *** 和nmap的其它不同的端口扫描 *** 结合使用。选择所有处于打开状态的端口向它们发出SunRPC程序的NULL命令,以确定它们是否是RPC端口,如果是,就确定是哪种软件及其版本号。因此你能够获得防火墙的一些信息。诱饵扫描现在还不能和RPC扫描结合使用。
-bFTP反弹攻击(bounceattack):FTP协议(RFC959)有一个很有意思的特征,它支持 *** FTP连接。也就是说,我能够从evil.com连接到FTP服务器target.com,并且可以要求这台FTP服务器为自己发送Internet上任何地方的文件!1985年,RFC959完成时,这个特征就能很好地工作了。然而,在今天的Internet中,我们不能让人们劫持FTP服务器,让它向Internet上的任意节点发送数据。如同Hobbit在1995年写的文章中所说的,这个协议"能够用来做投递虚拟的不可达邮件和新闻,进入各种站点的服务器,填满硬盘,跳过防火墙,以及其它的骚扰活动,而且很难进行追踪"。我们可以使用这个特征,在一台 *** FTP服务器扫描TCP端口。因此,你需要连接到防火墙后面的一台FTP服务器,接着进行端口扫描。如果在这台FTP服务器中有可读写的目录,你还可以向目标端口任意发送数据(不过nmap不能为你做这些)。传递给-b功能选项的参数是你要作为 *** 的FTP服务器。语法格式为:-busername:password@server:port。除了server以外,其余都是可选的。如果你想知道什么服务器有这种缺陷,可以参考我在Phrack51发表的文章。还可以在nmap的站点得到这篇文章的最新版本。
通用选项这些内容不是必需的,但是很有用。
-P0在扫描之前,不必ping主机。有些 *** 的防火墙不允许ICMPecho请求穿过,使用这个选项可以对这些 *** 进行扫描。microsoft.com就是一个例子,因此在扫描这个站点时,你应该一直使用-P0或者-PT80选项。
-PT扫描之前,使用TCPping确定哪些主机正在运行。nmap不是通过发送ICMPecho请求包然后等待响应来实现这种功能,而是向目标 *** (或者单一主机)发出TCPACK包然后等待回应。如果主机正在运行就会返回RST包。只有在目标 *** /主机阻塞了ping包,而仍旧允许你对其进行扫描时,这个选项才有效。对于非root用户,我们使用connect()系统调用来实现这项功能。使用-PT来设定目标端口。默认的端口号是80,因为这个端口通常不会被过滤。
-PS对于root用户,这个选项让nmap使用SYN包而不是ACK包来对目标主机进行扫描。如果主机正在运行就返回一个RST包(或者一个SYN/ACK包)。
-PI设置这个选项,让nmap使用真正的ping(ICMPecho请求)来扫描目标主机是否正在运行。使用这个选项让nmap发现正在运行的主机的同时,nmap也会对你的直接子网广播地址进行观察。直接子网广播地址一些外部可达的IP地址,把外部的包转换为一个内向的IP广播包,向一个计算机子网发送。这些IP广播包应该删除,因为会造成拒绝服务攻击(例如 *** urf)。
端口是什麽?端口请问怎样打开和关闭自己电脑上的某个端口啊
端口分为3大类
1) 公认端口(Well Known Ports):从0到1023,它们紧密绑定于一些服务。通常 这些端口的通讯明确表明了某种服 务的协议。例如:80端口实际上总是h++p通讯。
2) 注册端口(Registered Ports):从1024到49151。它们松散地绑定于一些服 务。也就是说有许多服务绑定于这些端口,这些端口同样用于许多其它目的。例如: 许多系统处理动态端口从1024左右开始。
3) 动态和/或私有端口(Dynamic and/or Private Ports):从49152到65535。 理论上,不应为服务分配这些端口。实际上,机器通常从1024起分配动态端口。但也 有例外:SUN的RPC端口从32768开始。
本节讲述通常TCP/UDP端口扫描在防火墙记录中的信息。
记住:并不存在所谓 ICMP端口。如果你对解读ICMP数据感兴趣,请参看本文的其它部分。
0 通常用于分析* 作系统。这一方*能够工作是因为在一些系统中“0”是无效端口,当你试 图使用一 种通常的闭合端口连接它时将产生不同的结果。一种典型的扫描:使用IP地址为 0.0.0.0,设置ACK位并在以太网层广播。
1 tcpmux这显示有人在寻找SGIIrix机 器。Irix是实现tcpmux的主要提供者,缺省情况下tcpmux在这种系统中被打开。Iris 机器在发布时含有几个缺省的无密码的帐户,如lp,guest, uucp, nuucp, demos, tutor, diag, EZsetup, OutOfBox,
和4Dgifts。许多管理员安装后忘记删除这些帐户。因此Hacker们在Internet上搜索 tcpmux 并利用这些帐户。
7Echo你能看到许多人们搜索Fraggle放大器时,发送到x.x.x.0和x.x.x.255的信 息。常见的一种DoS攻击是echo循环(echo-loop),攻击者伪造从一个机器发送到另 一个UDP数据包,而两个机器分别以它们最快的方式回应这些数据包。(参见 Chargen) 另一种东西是由DoubleClick在词端口建立的TCP连接。有一种产品叫做 Resonate Global Dispatch”,它与DNS的这一端口连接以确定最近的路 由。Harvest/squid cache将从3130端口发送UDPecho:“如果将cache的 source_ping on选项打开,它将对原始主机的UDP echo端口回应一个HIT reply。”这将会产生许多这类数据包。
11 sysstat这是一种UNIX服务,它会列出机器上所有正在运行的进程以及是什么启动 了这些进程。这为入侵者提供了许多信息而威胁机器的安全,如暴露已知某些弱点或 帐户的程序。这与UNIX系统中“ps”命令的结果相似再说一遍:ICMP没有端口,ICMP port 11通常是ICMPtype=1119 chargen 这是一种仅仅发送字符的服务。UDP版本将 会在收到UDP包后回应含有垃圾字符的包。TCP连
接时,会发送含有垃圾字符的数据流知道连接关闭。Hacker利用IP欺骗可以发动DoS 攻击伪造两 个chargen服务器之间的UDP由于服务器企图回应两个服务器之间的无限 的往返数据通讯一个chargen和echo将导致服务器过载。同样fraggle DoS攻击向目标 地址的这个端口广播一个带有伪造受害者IP的数据包,受害者为了回应这些数据而过 载。
21 ftp最常见的攻击者用于寻找打开“anonymous”的ftp服务器的方*。这些服务器 带有可读写的目录。Hackers或tackers利用这些服务器作为传送warez (私有程序) 和pr0n(故意拼错词而避免被搜索引擎分类)的节点。
22 sshPcAnywhere建立TCP和这一端口的连接可能是为了寻找ssh。这一服务有许多弱 点。如果配置成特定的模式,许多使用RSAREF库的版本有不少漏洞。(建议在其它端 口运行ssh)还应该注意的是ssh工具包带有一个称为ake-ssh-known-hosts的程序。 它会扫描整个域的ssh主机。你有时会被使用这一程序的人无意中扫描到。UDP(而不 是TCP)与另一端的5632端口相连意味着存在搜索pcAnywhere的扫描。5632 (十六进 制的0x1600)位交换后是0x0016(使进制的22)。
23 Telnet入侵者在搜索远程登陆UNIX的服务。大多数情况下入侵者扫描这一端口是 为了找到机器运行的*作系统。此外使用其它技术,入侵者会找到密码。
25 *** tp攻击者(spammer)寻找 *** TP服务器是为了传递他们的spam。入侵者的帐户总 被关闭,他们需要拨号连接到高带宽的e-mail服务器上,将简单的信息传递到不同的 地址。 *** TP服务器(尤其是sendmail)是进入系统的最常用方*之一,因为它们必须 完整的暴露于Internet且邮件的路由是复杂的(暴露+复杂=弱点)。
53 DNSHacker或crackers可能是试图进行区域传递(TCP),欺骗DNS(UDP)或隐藏 其它通讯。因此防火墙常常过滤或记录53端口。 需要注意的是你常会看到53端口做为 UDP源端口。不稳定的防火墙通常允许这种通讯并假设这是对DNS查询的回复。Hacker 常使用这种方*穿透防火墙。
67和68 Bootp和DHCPUDP上的Bootp/DHCP:通过DSL和cable-modem的防火墙常会看 见大量发送到广播地址255.255.255.255的数据。这些机器在向DHCP服务器请求一个 地址分配。Hacker常进入它们分配一个地址把自己作为局部路由器而发起大量的“中 间人”(man-in-middle)攻击。客户端向68端口(bootps)广播请求配置,服务器 向67端口(bootpc)广播回应请求。这种回应使用广播是因为客户端还不知道可以发 送的IP地址。69 TFTP(UDP) 许多服务器与bootp一起提供这项服务,便于从系统下载 启动代码。但是它们常常错误配置而从系统提供任何文件,如密码文件。它们也可用 于向系统写入文件
79 finger Hacker用于获得用户信息,查询*作系统,探测已知的缓冲区溢出错误, 回应从自己机器到其它机器finger扫描。
98 linuxconf 这个程序提供linuxboxen的简单管理。通过整合的h++p服务器在98端 口提供基于Web界面的服务。它已发现有许多安全问题。一些版本setuidroot,信任 局域网,在/tmp下建立Internet可访问的文件,LANG环境变量有缓冲区溢出。 此外 因为它包含整合的服务器,许多典型的h++p漏洞可
能存在(缓冲区溢出,历遍目录等)109 POP2并不象POP3那样有名,但许多服务器同 时提供两种服务(向后兼容)。在同一个服务器上POP3的漏洞在POP2中同样存在。
110 POP3用于客户端访问服务器端的邮件服务。POP3服务有许多公认的弱点。关于用 户名和密码交换缓冲区溢出的弱点至少有20个(这意味着Hacker可以在真正登陆前进 入系统)。成功登陆后还有其它缓冲区溢出错误。
111 sunrpc portmap rpcbind Sun RPCPortMapper/RPCBIND。访问portmapper是 扫描系统查看允许哪些RPC服务的最早的一步。常 见RPC服务有:pc.mountd, NFS, rpc.statd, rpc.c *** d, rpc.ttybd, amd等。入侵者发现了允许的RPC服务将转向提 供 服务的特定端口测试漏洞。记住一定要记录线路中的
daemon, IDS, 或sniffer,你可以发现入侵者正使用什么程序访问以便发现到底发生 了什么。
113 Ident auth .这是一个许多机器上运行的协议,用于鉴别TCP连接的用户。使用 标准的这种服务可以获得许多机器的信息(会被Hacker利用)。但是它可作为许多服 务的记录器,尤其是FTP, POP, IMAP, *** TP和IRC等服务。通常如果有许多客户通过 防火墙访问这些服务,你将会看到许多这个端口的连接请求。记住,如果你阻断这个 端口客户端会感觉到在防火墙另一边与e-mail服务器的缓慢连接。许多防火墙支持在 TCP连接的阻断过程中发回T,着将回停止这一缓慢的连接。
119 NNTP news新闻组传输协议,承载USENET通讯。当你链接到诸 如:news:p.security.firewalls/. 的地址时通常使用这个端口。这个端口的连接 企图通常是人们在寻找USENET服务器。多数ISP限制只有他们的客户才能访问他们的新 闻组服务器。打开新闻组服务器将允许发/读任何人的帖子,访问被限制的新闻组服务 器,匿名发帖或发送spam。
135 oc-serv MS RPC end-point mapper Microsoft在这个端口运行DCE RPC end- point mapper为它的DCOM服务。这与UNIX 111端口的功能很相似。使用DCOM和/或 RPC的服务利用 机器上的end-point mapper注册它们的位置。远
端客户连接到机器时,它们查询end-point mapper找到服务的位置。同样Hacker扫描 机器的这个端口是为了找到诸如:这个机器上运 行Exchange Server吗?是什么版 本? 这个端口除了被用来查询服务(如使用epdump)还可以被用于直接攻击。有一些 DoS攻 击直接针对这个端口。
137 NetBIOS name service nbtstat (UDP)这是防火墙管理员最常见的信息,请仔 细阅读文章后面的NetBIOS一节 139 NetBIOS File and Print Sharing
通过这个端口进入的连接试图获得NetBIOS/ *** B服务。这个协议被用于Windows“文件 和打印机共享”和SAMBA。在Internet上共享自己的硬盘是可能是最常见的问题。 大 量针对这一端口始于1999,后来逐渐变少。2000年又有回升。一些VBS(IE5 VisualBasicScripting)开始将它们自己拷贝到这个端口,试图在这个端口繁殖。
143 IMAP和上面POP3的安全问题一样,许多IMAP服务器有缓冲区溢出漏洞运行登陆过 程中进入。记住:一种Linux蠕虫(admw0rm)会通过这个端口繁殖,因此许多这个端 口的扫描来自不知情的已被感染的用户。当RadHat在他们的Linux发布版本中默认允 许IMAP后,这些漏洞变得流行起来。Morris蠕虫以后这还是之一次广泛传播的蠕虫。 这一端口还被用于IMAP2,但并不流行。 已有一些报道发现有些0到143端口的攻击源 于脚本。
161 SNMP(UDP)入侵者常探测的端口。SNMP允许远程管理设备。所有配置和运行信息 都储存在数据库中,通过SNMP客获得这些信息。许多管理员错误配置将它们暴露于 Internet。Crackers将试图使用缺省的密码“public”“private”访问系统。他们 可能会试验所有可能的组合。 SNMP包可能会被错误的指向你的 *** 。Windows机器常 会因为错误配置将HP JetDirect rmote management软件使用SNMP。HP OBJECT IDENTIFIER将收到SNMP包。新版的Win98使用SNMP解析域名,你会看见这种包在子网 内广播(cable modem, DSL)查询sysName和其它信
息。
162 SNMP trap 可能是由于错误配置
177 xdmcp 许多Hacker通过它访问X-Windows控制台,它同时需要打开6000端口。
513 rwho 可能是从使用cable modem或DSL登陆到的子网中的UNIX机器发出的广播。 这些人为Hacker进入他们的系统提供了很有趣的信息
553 CORBA IIOP (UDP) 如果你使用cable modem或DSL VLAN,你将会看到这个端口 的广播。CORBA是一种面向对象的RPC(remote procedure call)系统。Hacker会利 用这些信息进入系统。 600 Pcserver backdoor 请查看1524端口一些玩script的孩 子认为他们通过修改ingreslock和pcserver文件已经完全攻破了系统-- Alan J. Rosenthal.
635 mountd Linux的mountd Bug。这是人们扫描的一个流行的Bug。大多数对这个端 口的扫描是基于UDP的,但基于TCP 的mountd有所增加(mountd同时运行于两个端 口)。记住,mountd可运行于任何端口(到底在哪个端口,需要在端口111做portmap 查询),只是Linux默认为635端口,就象NFS通常运行于2049
1024 许多人问这个 端口是干什么的。它是动态端口的开始。许多程序并不在乎用哪个端口连接 *** ,它 们请求*作系统为它们分配“下一个闲置端口”。基于这一点分配从端口1024开始。 这意味着之一个向系统请求分配动态端口的程序将被分配端口1024。为了验证这一 点,你可以重启机器,打开Telnet,再打开一个窗口运行“natstat -a”,你将会看 到Telnet被分配1024端口。请求的程序越多,动态端口也越多。*作系统分配的端口 将逐渐变大。再来一遍,当你浏览Web页时用“netstat”查看,每个Web页需要一个 新端口。 ?ersion 0.4.1, June 20, 2000 h++p:// pubs/firewall-seen.html Copyright 1998-2000 by Robert Graham
(mailto:firewall-seen1@robertgraham.com.
All rights reserved. This document may only be reproduced (whole orin part) for non-commercial purposes. All reproductions must
contain this copyright notice and must not be altered, except by
permission of the author.
1025 参见1024
1026参见1024
1080 SOCKS 这一协议以管道方式穿过防火墙,允许防火墙后面的许多人通过一个IP 地址访问Internet。理论上它应该只
允许内部的通信向外达到Internet。但是由于错误的配置,它会允许Hacker/Cracker 的位于防火墙外部的攻
击穿过防火墙。或者简单地回应位于Internet上的计算机,从而掩饰他们对你的直接 攻击。
WinGate是一种常见的Windows个人防火墙,常会发生上述的错误配置。在加入IRC聊 天室时常会看到这种情况。
1114 SQL 系统本身很少扫描这个端口,但常常是sscan脚本的一部分。
1243 Sub-7木马(TCP)参见Subseven部分。
1524 ingreslock后门 许多攻击脚本将安装一个后门Sh*ll 于这个端口(尤其是那些 针对Sun系统中Sendmail和RPC服务漏洞的脚本,如statd,ttdbserver和cmsd)。如 果你刚刚安装了你的防火墙就看到在这个端口上的连接企图,很可能是上述原因。你 可以试试Telnet到你的机器上的这个端口,看看它是否会给你一个Sh*ll 。连接到 600/pcserver也存在这个问题。
2049 NFS NFS程序常运行于这个端口。通常需要访问portmapper查询这个服务运行于 哪个端口,但是大部分情况是安装后NFS杏谡飧龆丝冢?acker/Cracker因而可以闭开 portmapper直接测试这个端口。
3128 squid 这是Squid h++p *** 服务器的默认端口。攻击者扫描这个端口是为了搜 寻一个 *** 服务器而匿名访问Internet。你也会看到搜索其它 *** 服务器的端口:
000/8001/8080/8888。扫描这一端口的另一原因是:用户正在进入聊天室。其它用户 (或服务器本身)也会检验这个端口以确定用户的机器是否支持 *** 。请查看5.3节。
5632 pcAnywere你会看到很多这个端口的扫描,这依赖于你所在的位置。当用户打开 pcAnywere时,它会自动扫描局域网C类网以寻找可能得 *** (译者:指agent而不是 proxy)。Hacker/cracker也会寻找开放这种服务的机器,所以应该查看这种扫描的 源地址。一些搜寻pcAnywere的扫描常包含端口22的UDP数据包。参见拨号扫描。
6776 Sub-7 artifact 这个端口是从Sub-7主端口分离出来的用于传送数据的端口。 例如当控制者通过 *** 线控制另一台机器,而被控机器挂断时你将会看到这种情况。 因此当另一人以此IP拨入时,他们将会看到持续的,在这个端口的连接企图。(译 者:即看到防火墙报告这一端口的连接企图时,并不表示你已被Sub-7控制。)
6970 RealAudio客户将从服务器的6970-7170的UDP端口接收音频数据流。这是由TCP7070 端口外向控制连接设置13223 PowWow PowWow 是Tribal Voice的聊天程序。它允许 用户在此端口打开私人聊天的接。这一程序对于建立连接非常具有“进攻性”。它 会“驻扎”在这一TCP端口等待回应。这造成类似心跳间隔的连接企图。如果你是一个 拨号用户,从另一个聊天者手中“继承”了IP地址这种情况就会发生:好象很多不同 的人在测试这一端口。这一协议使用“OPNG”作为其连接企图的前四个字节。
17027 Conducent这是一个外向连接。这是由于公司内部有人安装了带有Conducent "adbot" 的共享软件。
Conducent "adbot"是为共享软件显示广告服务的。使用这种服务的一种流行的软件 是Pkware。有人试验:阻断这一外向连接不会有任何问题,但是封掉IP地址本身将会 导致adbots持续在每秒内试图连接多次而导致连接过载:
机器会不断试图解析DNS名—ads.conducent.com,即IP地址216.33.210.40 ;
216.33.199.77 ;216.33.199.80 ;216.33.199.81;216.33.210.41。(译者:不 知NetAnts使用的Radiate是否也有这种现象)
27374 Sub-7木马(TCP) 参见Subseven部分。
30100 NetSphere木马(TCP) 通常这一端口的扫描是为了寻找中了NetSphere木马。
31337 Back Orifice “eliteHacker中31337读做“elite”/ei’li:t/(译者:* 语,译为中坚力量,精华。即 3=E, 1=L, 7=T)。因此许多后门程序运行于这一端 口。其中最有名的是Back Orifice。曾经一段时间内这是Internet上最常见的扫描。 现在它的流行越来越少,其它的 木马程序越来越流行。
31789 Hack-a-tack 这一端口的UDP通讯通常是由于"Hack-a-tack"远程访问木马 (RAT,Remote Access Trojan)。这种木马包含内置的31790端口扫描器,因此任何 31789端口到317890端口的连 接意味着已经有这种入侵。(31789端口是控制连 接,317890端口是文件传输连接)
32770~32900 RPC服务 Sun Solaris的RPC服务在这一范围内。详细的说:早期版本 的Solaris(2.5.1之前)将 portmapper置于这一范围内,即使低端口被防火墙封闭 仍然允许Hacker/cracker访问这一端口。 扫描这一范围内的端口不是为了寻找 portmapper,就是为了寻找可被攻击的已知的RPC服务。
33434~33600 traceroute 如果你看到这一端口范围内的UDP数据包(且只在此范围 之内)则可能是由于traceroute。参见traceroute分。
41508 Inoculan早期版本的Inoculan会在子网内产生大量的UDP通讯用于识别彼此。 参见
h++p://
h++p://端口1~1024是保留端 口,所以它们几乎不会是源端口。但有一些例外,例如来自NAT机器的连接。 常看见 紧接着1024的端口,它们是系统分配给那些并不在乎使用哪个端口连接的应用程序 的“动态端口”。 Server Client 服务描述
1-5/tcp 动态 FTP 1-5端口意味着sscan脚本
20/tcp 动态 FTP FTP服务器传送文件的端口
53 动态 FTP DNS从这个端口发送UDP回应。你也可能看见源/目标端口的TCP连 接。
123 动态 S/NTP 简单 *** 时间协议(S/NTP)服务器运行的端口。它们也会发送 到这个端口的广播。
27910~27961/udp 动态 Quake Quake或Quake引擎驱动的游戏在这一端口运行其 服务器。因此来自这一端口范围的UDP包或发送至这一端口范围的UDP包通常是游戏。
61000以上 动态 FTP 61000以上的端口可能来自Linux NAT服务器
端口大全(中文)
1 tcpmux TCP Port Service Multiplexer 传输控制协议端口服务多路开关选择器
2 compressnet Management Utility compressnet 管理实用程序
3 compressnet Compression Process 压缩进程
5 rje Remote Job Entry 远程作业登录
7 echo Echo 回显
9 discard Discard 丢弃
11 systat Active Users 在线用户
13 daytime Daytime 时间
17 qotd Quote of the Day 每日引用
18 msp Message Send Protocol 消息发送协议
19 chargen Character Generator 字符发生器
20 ftp-data File Transfer [Default Data] 文件传输协议(默认数据口)
21 ftp File Transfer [Control] 文件传输协议(控制)
22 ssh SSH Remote Login Protocol SSH远程登录协议
23 telnet Telnet 终端仿真协议
24 ? any private mail system 预留给个人用邮件系统
25 *** tp Simple Mail Transfer 简单邮件发送协议
27 nsw-fe NSW User System FE NSW 用户系统现场工程师
29 msg-icp MSG ICP MSG ICP
31 msg-auth MSG Authentication MSG验证
33 dsp Display Support Protocol 显示支持协议
35 ? any private printer server 预留给个人打印机服务
37 time Time 时间
38 rap Route Access Protocol 路由访问协议
39 rlp Resource Location Protocol 资源定位协议
41 graphics Graphics 图形
42 nameserver WINS Host Name Server WINS 主机名服务
43 nicname Who Is "绰号" who is服务
44 mpm-flags MPM FLAGS Protocol MPM(消息处理模块)标志协议
45 mpm Message Processing Module [recv] 消息处理模块
46 mpm-snd MPM [default send] 消息处理模块(默认发送口)
47 ni-ftp NI FTP
怎么样查看本地已经开启的端口?出来的内容是什么意思?
Active Ports 是一个在Windows NT/2000/XP 下易于操作的工具,它能够让你监控本机上所有打开的TCP/IP以及UDP端口,Active Ports 可以让你了解哪个程序在哪个端口应用。
下载地址:
至于每个端口的作用,请参考下面的表,但是最新的一些端口还是要自己去搜索一下的
端口列表
端口列表
端口大全(nxlyl,bingtang共同完成)
不同的端口有不同的作用希望大家能有所收获。
为了帮助大家了解端口的作用特寻问如下:
1 tcpmux TCP Port Service Multiplexer 传输控制协议端口服务多路开关选择器
2 compressnet Management Utility compressnet 管理实用程序
3 compressnet Compression Process 压缩进程
5 rje Remote Job Entry 远程作业登录
7 echo Echo 回显
9 discard Discard 丢弃
11 systat Active Users 在线用户
13 daytime Daytime 时间
17 qotd Quote of the Day 每日引用
18 msp Message Send Protocol 消息发送协议
19 chargen Character Generator 字符发生器
20 ftp-data File Transfer [Default Data] 文件传输协议(默认数据口)
21 ftp File Transfer [Control] 文件传输协议(控制)
22 ssh SSH Remote Login Protocol SSH远程登录协议
23 telnet Telnet 终端仿真协议
24 ? any private mail system 预留给个人用邮件系统
25 *** tp Simple Mail Transfer 简单邮件发送协议
27 nsw-fe NSW User System FE NSW 用户系统现场工程师
29 msg-icp MSG ICP MSG ICP
31 msg-auth MSG Authentication MSG验证
33 dsp Display Support Protocol 显示支持协议
35 ? any private printer server 预留给个人打印机服务
37 time Time 时间
38 rap Route Access Protocol 路由访问协议
39 rlp Resource Location Protocol 资源定位协议
41 graphics Graphics 图形
42 nameserver WINS Host Name Server WINS 主机名服务
43 nicname Who Is "绰号" who is服务
44 mpm-flags MPM FLAGS Protocol MPM(消息处理模块)标志协议
45 mpm Message Processing Module [recv] 消息处理模块
46 mpm-snd MPM [default send] 消息处理模块(默认发送口)
47 ni-ftp NI FTP NI FTP
48 auditd Digital Audit Daemon 数码音频后台服务
49 tacacs Login Host Protocol (TACACS) TACACS登录主机协议
50 re-mail-ck Remote Mail Checking Protocol 远程邮件检查协议
51 la-maint IMP Logical Address Maintenance IMP(接口信息处理机)逻辑地址维护
52 xns-time XNS Time Protocol 施乐 *** 服务系统时间协议
53 domain Domain Name Server 域名服务器
54 xns-ch XNS Clearinghouse 施乐 *** 服务系统票据交换
55 isi-gl ISI Graphics Language ISI图形语言
56 xns-auth XNS Authentication 施乐 *** 服务系统验证
57 ? any private terminal access 预留个人用终端访问
58 xns-mail XNS Mail 施乐 *** 服务系统邮件
59 ? any private file service 预留个人文件服务
60 ? Unassigned 未定义
61 ni-mail NI MAIL NI邮件?
62 acas ACA Services 异步通
63 whois+ whois+ WHOIS+
64 covia Communications Integrator (CI) 通讯接口
65 tacacs-ds TACACS-Database Service TACACS数据库服务
66 sql*net Oracle SQL*NET Oracle SQL*NET
67 bootps Bootstrap Protocol Server 引导程序协议服务端
68 bootpc Bootstrap Protocol Client 引导程序协议客户端
69 tftp Trivial File Transfer 小型文件传输协议
70 gopher Gopher 信息检索协议
71 netrjs-1 Remote Job Service 远程作业服务
72 netrjs-2 Remote Job Service 远程作业服务
73 netrjs-3 Remote Job Service 远程作业服务
74 netrjs-4 Remote Job Service 远程作业服务
75 ? any private dial out service 预留给个人拨出服务
76 deos Distributed External Object Store 分布式外部对象存储
77 ? any private RJE service 预留给个人远程作业输入服务
78 vettcp vettcp 修正TCP?
79 finger Finger FINGER(查询远程主机在线用户等信息)
80 http World Wide Web HTTP 全球信息网超文本传输协议
81 hosts2-ns HOSTS2 Name Server HOST2名称服务
82 xfer XFER Utility 传输实用程序
83 mit-ml-dev MIT ML Device 模块化智能终端ML设备
84 ctf Common Trace Facility 公用追踪设备
85 mit-ml-dev MIT ML Device 模块化智能终端ML设备
86 mfcobol Micro Focus Cobol Micro Focus Cobol编程语言
87 ? any private terminal link 预留给个人终端连接
88 kerberos Kerberos Kerberros安全认证系统
89 su-mit-tg SU/MIT Telnet Gateway SU/MIT终端仿真网关
90 dnsix DNSIX Securit Attribute Token Map DNSIX 安全属性标记图
91 mit-dov MIT Dover Spooler MIT Dover假脱机
92 npp Network Printing Protocol *** 打印协议
93 dcp Device Control Protocol 设备控制协议
94 objcall Tivoli Object Dispatcher Tivoli对象调度
95 supdup SUPDUP
96 dixie DIXIE Protocol Specification DIXIE协议规范
97 swift-rvf Swift Remote Virtural File Protocol 快速远程虚拟文件协议
98 tacnews TAC News TAC(东京大学自动计算机?)新闻协议
99 metagram Metagram Relay
101/tcp hostname NIC Host Name Server
102/tcp iso-tsap ISO-TSAP Class 0
103/tcp gppitnp Genesis Point-to-Point Trans Net
104/tcp acr-nema ACR-NEMA Digital Imag. Comm. 300
105/tcp cso CCSO name server protocol
105/tcp csnet-ns Mailbox Name Nameserver
106/tcp 3com-t *** ux 3COM-T *** UX
107/tcp rtelnet Remote Telnet Service
108/tcp snagas SNA Gateway Access Server
109/tcp pop2 Post Office Protocol - Version 2
110/tcp pop3 Post Office Protocol - Version 3
111/tcp sunrpc SUN Remote Procedure Call
112/tcp mcidas McIDAS Data Tran *** ission Protocol
113/tcp ident
114/tcp audionews Audio News Multicast
115/tcp sftp Simple File Transfer Protocol
116/tcp ansanotify ANSA REX Notify
117/tcp uucp-path UUCP Path Service
118/tcp sqlserv SQL Services
119/tcp nntp Network News Transfer Protocol
120/tcp cfdptkt CFDPTKT
121/tcp erpc Encore Expedited Remote Pro.Call
122/tcp *** akynet *** AKYNET
123/tcp ntp Network Time Protocol
124/tcp ansatrader ANSA REX Trader
125/tcp locus-map Locus PC-Interface Net Map Ser
126/tcp unitary Unisys Unitary Login
127/tcp locus-con Locus PC-Interface Conn Server
128/tcp gss-xlicen GSS X License Verification
129/tcp pwdgen Password Generator Protocol
130/tcp cisco-fna cisco FNATIVE
131/tcp cisco-tna cisco TNATIVE
132/tcp cisco-sys cisco SY *** AINT
133/tcp statsrv Statistics Service
134/tcp ingres-net INGRES-NET Service
135/tcp epmap DCE endpoint resolution
136/tcp profile PROFILE Naming System
137/tcp netbios-ns NETBIOS Name Service
138/tcp netbios-dgm NETBIOS Datagram Service
139/tcp netbios-ssn NETBIOS Session Service
140/tcp emfis-data EMFIS Data Service
141/tcp emfis-cntl EMFIS Control Service
142/tcp bl-idm Britton-Lee IDM
143/tcp imap Internet Message Access Protocol
144/tcp uma Universal Management Architecture
145/tcp uaac UAAC Protocol
146/tcp iso-tp0 ISO-IP0
147/tcp iso-ip ISO-IP
148/tcp jargon Jargon
149/tcp aed-512 AED 512 Emulation Service
150/tcp sql-net SQL-NET
151/tcp hems HEMS
152/tcp bftp Background File Transfer Program
153/tcp sgmp SGMP
154/tcp netsc-prod NETSC
155/tcp netsc-dev NETSC
156/tcp sqlsrv SQL Service
157/tcp knet-cmp KNET/VM Command/Message Protocol
158/tcp pcmail-srv PCMail Server
159/tcp nss-routing NSS-Routing
160/tcp sgmp-traps SGMP-TRAPS
161/tcp snmp SNMP
162/tcp snmptrap SNMPTRAP
163/tcp cmip-man CMIP/TCP Manager
164/tcp cmip-agent CMIP/TCP Agent
165/tcp xns-courier Xerox
166/tcp s-net Sirius Systems
167/tcp namp NAMP
168/tcp rsvd RSVD
169/tcp send SEND
170/tcp print-srv Network PostScript
171/tcp multiplex Network Innovations Multiplex
172/tcp cl/1 Network Innovations CL/1
173/tcp xyplex-mux Xyplex
174/tcp mailq MAILQ
175/tcp vmnet VMNET
176/tcp genrad-mux GENRAD-MUX
177/tcp xdmcp X Display Manager Control Protocol
178/tcp nextstep NextStep Window Server
179/tcp bgp Border Gateway Protocol
180/tcp ris Intergraph
181/tcp unify Unify
182/tcp audit Unisys Audit SITP
183/tcp ocbinder OCBinder
184/tcp ocserver OCServer
185/tcp remote-kis Remote-KIS
186/tcp kis KIS Protocol
187/tcp aci Application Communication Interface
188/tcp mumps Plus Five磗 MUMPS
189/tcp qft Queued File Transport
190/tcp gacp Gateway Access Control Protocol
191/tcp prospero Prospero Directory Service
192/tcp osu-nms OSU Network Monitoring System
193/tcp srmp Spider Remote Monitoring Protocol
194/tcp irc Internet Relay Chat Protocol
195/tcp dn6-nlm-aud DNSIX Network Level Module Audit
196/tcp dn6- *** m-red DNSIX Session Mgt Module Audit Redir
197/tcp dls Directory Location Service
198/tcp dls-mon Directory Location Service Monitor
199/tcp *** ux *** UX
200/tcp src IBM System Resource Controller
201/tcp at-rtmp AppleTalk Routing Maintenance
202/tcp at-nbp AppleTalk Name Binding
203/tcp at-3 AppleTalk Unused
204/tcp at-echo AppleTalk Echo
205/tcp at-5 AppleTalk Unused
206/tcp at-zis AppleTalk Zone Information
207/tcp at-7 AppleTalk Unused
208/tcp at-8 AppleTalk Unused
209/tcp qmtp The Quick Mail Transfer Protocol
210/tcp z39.50 ANSI Z39.50
211/tcp 914c/g Texas Instruments 914C/G Terminal
212/tcp anet ATEXSSTR
214/tcp vmpwscs VM PWSCS
215/tcp softpc Insignia Solutions
216/tcp CAIlic Computer Associates Int磍 License Server
217/tcp dbase dBASE Unix
218/tcp mpp Netix Message Posting Protocol
219/tcp uarps Unisys ARPs
220/tcp imap3 Interactive Mail Access Protocol v3
221/tcp fln-spx Berkeley rlogind with SPX auth
222/tcp rsh-spx Berkeley rshd with SPX auth
223/tcp cdc Certificate Distribution Center
242/tcp direct Direct
243/tcp sur-meas Survey Measurement
244/tcp dayna Dayna
245/tcp link LINK
246/tcp dsp3270 Display Systems Protocol
247/tcp subntbcst_tftp SUBNTBCST_TFTP
248/tcp bhfhs bhfhs
256/tcp rap RAP
257/tcp set Secure Electronic Transaction
258/tcp yak-chat Yak Winsock Personal Chat
259/tcp esro-gen Efficient Short Remote Operations
260/tcp openport Openport
263/tcp hdap HDAP
264/tcp bgmp BGMP
280/tcp http-mgmt http-mgmt
309/tcp entrusttime EntrustTime
310/tcp bhmds bhmds
312/tcp vslmp VSLMP
315/tcp dpsi DPSI
316/tcp decauth decAuth
317/tcp zannet Zannet
321/tcp pip PIP
344/tcp pdap Prospero Data Access Protocol
345/tcp pawserv Perf Analysis Workbench
346/tcp zserv Zebra server
347/tcp fatserv Fatmen Server
348/tcp csi-sgwp Cabletron Management Protocol
349/tcp mftp mftp
351/tcp matip-type-b MATIP Type B
351/tcp bhoetty bhoetty (added 5/21/97)
353/tcp ndsauth NDSAUTH
354/tcp bh611 bh611
357/tcp bhevent bhevent
362/tcp srssend SRS Send
365/tcp dtk DTK
366/tcp odmr ODMR
368/tcp qbikgdp QbikGDP
371/tcp clearcase Clearcase
372/tcp ulistproc ListProcessor
373/tcp legent-1 Legent Corporation
374/tcp legent-2
以下是bingtang补充:
0 通常用于分析操作系统。这一 *** 能够工作是因为在一些系统中“0”是无效端口,当你试图使用一种通常的闭合端口连接它时将产生不同的结果。一种典型的扫描:使用IP地址为0.0.0.0,设置ACK位并在以太网层广播。
��1 tcpmux 这显示有人在寻找SGI Irix机器。Irix是实现tcpmux的主要提供者,缺省情况下tcpmux在这种系统中被打开。Iris机器在发布时含有几个缺省的无密码的帐户,如lp, guest, uucp, nuucp, demos, tutor, diag, EZsetup, OutOfBox, 和4Dgifts。许多管理员安装后忘记删除这些帐户。因此Hacker们在Internet上搜索tcpmux并利用这些帐户。
��7 Echo 你能看到许多人们搜索Fraggle放大器时,发送到x.x.x.0和x.x.x.255的信息。常见的一种DoS攻击是echo循环(echo-loop),攻击者伪造从一个机器发送到另一个机器的UDP数据包,而两个机器分别以它们最快的方式回应这些数据包。另一种东西是由DoubleClick在词端口建立的TCP连接。有一种产品叫做“Resonate Global Dispatch”,它与DNS的这一端口连接以确定最近的路由。Harvest/squid cache将从3130端口发送UDP echo:“如果将cache的source_ping on选项打开,它将对原始主机的UDP echo端口回应一个HIT reply。”这将会产生许多这类数据包。
��11 sysstat 这是一种UNIX服务,它会列出机器上所有正在运行的进程以及是什么启动了这些进程。这为入侵者提供了许多信息而威胁机器的安全,如暴露已知某些弱点或帐户的程序。这与UNIX系统中“ps”命令的结果相似。再说一遍:ICMP没有端口,ICMP port 11通常是ICMP type=11。
��19 chargen 这是一种仅仅发送字符的服务。UDP版本将会在收到UDP包后回应含有垃圾字符的包。TCP连接时,会发送含有垃圾字符的数据流知道连接关闭。Hacker利用IP欺骗可以发动DoS攻击。伪造两个chargen服务器之间的UDP包。由于服务器企图回应两个服务器之间的无限的往返数据通讯一个chargen和echo将导致服务器过载。同样fraggle DoS攻击向目标地址的这个端口广播一个带有伪造受害者IP的数据包,受害者为了回应这些数据而过载。
��21 ftp 最常见的攻击者用于寻找打开“anonymous”的ftp服务器的 *** 。这些服务器带有可读写的目录。Hackers或Crackers 利用这些服务器作为传送warez (私有程序) 和pr0n(故意拼错词而避免被搜索引擎分类)的节点。
��22 ssh PcAnywhere 建立TCP和这一端口的连接可能是为了寻找ssh。这一服务有许多弱点。如果配置成特定的模式,许多使用RSAREF库的版本有不少漏洞。(建议在其它端口运行ssh)。还应该注意的是ssh工具包带有一个称为make-ssh-known-hosts的程序。它会扫描整个域的ssh主机。你有时会被使用这一程序的人无意中扫描到。UDP(而不是TCP)与另一端的5632端口相连意味着存在搜索pcAnywhere的扫描。5632(十六进制的0x1600)位交换后是0x0016(使进制的22)。
��23 Telnet 入侵者在搜索远程登陆UNIX的服务。大多数情况下入侵者扫描这一端口是为了找到机器运行的操作系统。此外使用其它技术,入侵者会找到密码。
��25 *** tp 攻击者(spammer)寻找 *** TP服务器是为了传递他们的spam。入侵者的帐户总被关闭,他们需要拨号连接到高带宽的e-mail服务器上,将简单的信息传递到不同的地址。 *** TP服务器(尤其是sendmail)是进入系统的最常用 *** 之一,因为它们必须完整的暴露于Internet且邮件的路由是复杂的(暴露+复杂=弱点)。
��53 DNS Hacker或crackers可能是试图进行区域传递(TCP),欺骗DNS(UDP)或隐藏其它通讯。因此防火墙常常过滤或记录53端口。需要注意的是你常会看到53端口做为UDP源端口。不稳定的防火墙通常允许这种通讯并假设这是对DNS查询的回复。Hacker常使用这种 *** 穿透防火墙。
��6768 Bootp和DHCP UDP上的Bootp/DHCP:通过DSL和cable-modem的防火墙常会看见大量发送到广播地址255.255.255.255的数据。这些机器在向DHCP服务器请求一个地址分配。Hacker常进入它们分配一个地址把自己作为局部路由器而发起大量的“中间人”(man-in-middle)攻击。客户端向68端口(bootps)广播请求配置,服务器向67端口(bootpc)广播回应请求。这种回应使用广播是因为客户端还不知道可以发送的IP地址。
��69 TFTP(UDP) 许多服务器与bootp一起提供这项服务,便于从系统下载启动代码。但是它们常常错误配置而从系统提供任何文件,如密码文件。它们也可用于向系统写入文件。
��79 finger Hacker用于获得用户信息,查询操作系统,探测已知的缓冲区溢出错误,回应从自己机器到其它机器finger扫描。
��98 linuxconf 这个程序提供linux boxen的简单管理。通过整合的HTTP服务器在98端口提供基于Web界面的服务。它已发现有许多安全问题。一些版本setuid root,信任局域网,在/tmp下建立Internet可访问的文件,LANG环境变量有缓冲区溢出。此外因为它包含整合的服务器,许多典型的HTTP漏洞可能存在(缓冲区溢出,历遍目录等)
��109 POP2 并不象POP3那样有名,但许多服务器同时提供两种服务(向后兼容)。在同一个服务器上POP3的漏洞在POP2中同样存在。
��110 POP3 用于客户端访问服务器端的邮件服务。POP3服务有许多公认的弱点。关于用户名和密码交换缓冲区溢出的弱点至少有20个(这意味着Hacker可以在真正登陆前进入系统)。成功登陆后还有其它缓冲区溢出错误。
��111 sunrpc portmap rpcbind Sun RPC PortMapper/RPCBIND。访问portmapper是扫描系统查看允许哪些RPC服务的最早的一步。常见RPC服务有:rpc.mountd, NFS, rpc.statd, rpc.c *** d, rpc.ttybd, amd等。入侵者发现了允许的RPC服务将转向提供服务的特定端口测试漏洞。记住一定要记录线路中的daemon, IDS, 或sniffer,你可以发现入侵者正使用什么程序访问以便发现到底发生了什么。
��113 Ident auth 这是一个许多机器上运行的协议,用于鉴别TCP连接的用户。使用标准的这种服务可以获得许多机器的信息(会被Hacker利用)。但是它可作为许多服务的记录器,尤其是FTP, POP, IMAP, *** TP和IRC等服务。通常如果有许多客户通过防火墙访问这些服务,你将会看到许多这个端口的连接请求。记住,如果你阻断这个端口客户端会感觉到在防火墙另一边与e-mail服务器的缓慢连接。许多防火墙支持在TCP连接的阻断过程中发回RST,着将回停止这一缓慢的连接。
��119 NNTP news 新闻组传输协议,承载USENET通讯。当你链接到诸如:news://comp.security.firewalls/. 的地址时通常使用这个端口。这个端口的连接企图通常是人们在寻找USENET服务器。多数ISP限制只有他们的客户才能访问他们的新闻组服务器。打开新闻组服务器将允许发/读任何人的帖子,访问被限制的新闻组服务器,匿名发帖或发送spam。
��135 oc-serv MS RPC end-point mapper Microsoft在这个端口运行DCE RPC end-point mapper为它的DCOM服务。这与UNIX 111端口的功能很相似。使用DCOM和/或RPC的服务利用机器上的end-point mapper注册它们的位置。远端客户连接到机器时,它们查询end-point mapper找到服务的位置。同样Hacker扫描机器的这个端口是为了找到诸如:这个机器上运行Exchange Server吗?是什么版本?这个端口除了被用来查询服务(如使用epdump)还可以被用于直接攻击。有一些DoS攻击直接针对这个端口。
137 NetBIOS name service nbtstat (UDP) 这是防火墙管理员最常见的信息。
��139 NetBIOS File and Print Sharing 通过这个端口进入的连接试图获得NetBIOS/ *** B服务。这个协议被用于Windows“文件和打印机共享”和SAMBA。在Internet上共享自己的硬盘是可能是最常见的问题。大量针对这一端口始于1999,后来逐渐变少。2000年又有回升。一些VBS(IE5 VisualBasic Scripting)开始将它们自己拷贝到这个端口,试图在这个端口繁殖。
��143 IMAP 和上面POP3的安全问题一样,许多IMAP服务器有缓冲区溢出漏洞运行登陆过程中进入。记住:一种Linux蠕虫(admw0rm)会通过这个端口繁殖,因此许多这个端口的扫描来自不知情的已被感染的用户。当RadHat在他们的Linux发布版本中默认允许IMAP后,这些漏洞变得流行起来。Morris蠕虫以后这还是之一次广泛传播的蠕虫。这一端口还被用于IMAP2,但并不流行。已有一些报道发现有些0到143端口的攻击源于脚本。
��161 SNMP(UDP) 入侵者常探测的端口。SNMP允许远程管理设备。所有配置和运行信息都储存在数据库中,通过SNMP客获得这些信息。许多管理员错误配置将它们暴露于Internet。Crackers将试图使用缺省的密码“public”“private”访问系统。他们可能会试验所有可能的组合。SNMP包可能会被错误的指向你的 *** 。Windows机器常会因为错误配置将HP JetDirect remote management软件使用SNMP。HP OBJECT IDENTIFIER将收到SNMP包。新版的Win98使用SNMP解析域名,你会看见这种包在子网内广播(cable modem, DSL)查询sysName和其它信息。
��162 SNMP trap 可能是由于错误配置
��177 xdmcp 许多Hacker通过它访问X-Windows控制台, 它同时需要打开6000端口。
��513 rwho 可能是从使用cable modem或DSL登陆到的子网中的UNIX机器发出的广播。这些人为Hacker进入他们的系统提供了很有趣的信息。
��553 CORBA IIOP (UDP) 如果你使用cable modem或DSL VLAN,你将会看到这个端口的广播。CORBA是一种面向对象的RPC(remote procedure call)系统。Hacker会利用这些信息进入系统。
��600 Pcserver backdoor 请查看1524端口。
一些玩script的孩子认为他们通过修改ingreslock和pcserver文件已经完全攻破了系统-- Alan J. Rosenthal.
��635 mountd Linux的mountd Bug。这是人们扫描的一个流行的Bug。大多数对这个端口的扫描是基于UDP的,但基于TCP的mountd有所增加(mountd同时运行于两个端口)。记住,mountd可运行于任何端口(到底在哪个端口,需要在端口111做portmap查询),只是Linux默认为635端口,就象NFS通常运行于2049端口。
��1024 许多人问这个端口是干什么的。它是动态端口的开始。许多程序并不在乎用哪个端口连接 *** ,它们请求操作系统为它们分配“下一个闲置端口”。基于这一点分配从端口1024开始。这意味着之一个向系统请求分配动态端口的程序将被分配端口1024。为了验证这一点,你可以重启机器,打开Telnet,再打开一个窗口运行“natstat -a”,你将会看到Telnet被分配1024端口。请求的程序越多,动态端口也越多。操作系统分配的端口将逐渐变大。再来一遍,当你浏览Web页时用“netstat”查看,每个Web页需要一个新端口。
��1025,1026 参见1024
��1080 SOCKS 这一协议以管道方式穿过防火墙,允许防火墙后面的许多人通过一个IP地址访问Internet。理论上它应该只允许内部的通信向外达到Internet。但是由于错误的配置,它会允许Hacker/Cracker的位于防火墙外部的攻击穿过防火墙。或者简单地回应位于Internet上的计算机,从而掩饰他们对你的直接攻击。WinGate是一种常见的Windows个人防火墙,常会发生上述的错误配置。在加入IRC聊天室时常会看到这种情况。
��1114 SQL 系统本身很少扫描这个端口,但常常是sscan脚本的一部分。
��1243 Sub-7木马(TCP)
��1524 ingreslock 后门许多攻击脚本将安装一个后门Shell于这个端口(尤其是那些针对Sun系统中sendmail和RPC服务漏洞的脚本,如statd, ttdbserver和cmsd)。如果你刚刚安装了你的防火墙就看到在这个端口上的连接企图,很可能是上述原因。你可以试试Telnet到你的机器上的这个端口,看看它是否会给你一个Shell。连接到600/pcserver也存在这个问题。
��2049 NFS NFS程序常运行于这个端口。通常需要访问portmapper查询这个服务运行于哪个端口,但是大部分
端口??
每一项服务都对应相应的端口,比如众如周知的WWW服务的端口是80, *** tp是25,ftp是21,win2000安装中默认的都是这些服务开启的。对于个人用户来说确实没有必要,关掉端口也就是关闭无用的服务。 “控制面板”的“管理工具”中的“服务”中来配置。
1、关闭7.9等等端口:关闭Simple TCP/IP Service,支持以下 TCP/IP 服务:Character Generator, Daytime, Discard, Echo, 以及 Quote of the Day。
2、关闭80口:关掉WWW服务。在“服务”中显示名称为"World Wide Web Publishing Service",通过 Internet 信息服务的管理单元提供 Web 连接和管理。
3、关掉25端口:关闭Simple Mail Transport Protocol ( *** TP)服务,它提供的功能是跨网传送电子邮件。
4、关掉21端口:关闭FTP Publishing Service,它提供的服务是通过 Internet 信息服务的管理单元提供 FTP 连接和管理。
5、关掉23端口:关闭Telnet服务,它允许远程用户登录到系统并且使用命令行运行控制台程序。
6、还有一个很重要的就是关闭server服务,此服务提供 RPC 支持、文件、打印以及命名管道共享。关掉它就关掉了win2k的默认共享,比如ipc$、c$、admin$等等,此服务关闭不影响您的共他操作。
7、还有一个就是139端口,139端口是NetBIOS Session端口,用来文件和打印共享,注意的是运行samba的unix机器也开放了139端口,功能一样。以前流光2000用来判断对方主机类型不太准确,估计就是139端口开放既认为是NT机,现在好了。 关闭139口听 *** 是在“ *** 和拨号连接”中“本地连接”中选取“Internet协议(TCP/IP)”属性,进入“高级TCP/IP设置”“WINS设置”里面有一项“禁用TCP/IP的NETBIOS”,打勾就关闭了139端口。 对于个人用户来说,可以在各项服务属性设置中设为“禁用”,以免下次重启服务也重新启动,端口也开放了。
每一项服务都对应相应的端口,比如众如周知的WWW服务的端口是80, *** tp是25,ftp是21,win2000安装中默认的都是这些服务开启的。对于个人用户来说确实没有必要,关掉端口也就是关闭无用的服务。
“控制面板”的“管理工具”中的“服务”中来配置。
1、关闭7.9等等端口:关闭Simple TCP/IP Service,支持以下 TCP/IP 服务:Character Generator, Daytime, Discard, Echo, 以及 Quote of the Day。
2、关闭80口:关掉WWW服务。在“服务”中显示名称为"World Wide Web Publishing Service",通过 Internet 信息服务的管理单元提供 Web 连接和管理。
3、关掉25端口:关闭Simple Mail Transport Protocol ( *** TP)服务,它提供的功能是跨网传送电子邮件。
4、关掉21端口:关闭FTP Publishing Service,它提供的服务是通过 Internet 信息服务的管理单元提供 FTP 连接和管理。
5、关掉23端口:关闭Telnet服务,它允许远程用户登录到系统并且使用命令行运行控制台程序。
6、还有一个很重要的就是关闭server服务,此服务提供 RPC 支持、文件、打印以及命名管道共享。关掉它就关掉了win2k的默认共享,比如ipc$、c$、admin$等等,此服务关闭不影响您的共他操作。
7、还有一个就是139端口,139端口是NetBIOS Session端口,用来文件和打印共享,注意的是运行samba的unix机器也开放了139端口,功能一样。以前流光2000用来判断对方主机类型不太准确,估计就是139端口开放既认为是NT机,现在好了。
关闭139口听 *** 是在“ *** 和拨号连接”中“本地连接”中选取“Internet协议(TCP/IP)”属性,进入“高级TCP/IP设置”“WINS设置”里面有一项“禁用TCP/IP的NETBIOS”,打勾就关闭了139端口。
对于个人用户来说,可以在各项服务属性设置中设为“禁用”,以免下次重启服务也重新启动,端口也开放了。
我们一般采用一些功能强大的反黑软件和防火墙来保证我们的系统安全,但是有些用户不具备上述条件。怎么办呢?下面就介绍一种简易的办法——通过限制端口来帮助大家防止非法入侵。
非法入侵的方式
简单说来,非法入侵的方式可粗略分为4种:
1、扫描端口,通过已知的系统Bug攻入主机。
2、种植木马,利用木马开辟的后门进入主机。
3、采用数据溢出的手段,迫使主机提供后门进入主机。
4、利用某些软件设计的漏洞,直接或间接控制主机。
非法入侵的主要方式是前两种,尤其是利用一些流行的黑客工具,通过之一种方式攻击主机的情况最多、也最普遍;而对后两种方式来说,只有一些手段高超的黑客才利用,波及面并不广泛,而且只要这两种问题一出现,软件服务商很快就会提供补丁,及时修复系统。
因此,如果能限制前两种非法入侵方式,就能有效防止利用黑客工具的非法入侵。而且前两种非法入侵方式有一个共同点,就是通过端口进入主机。
端口就像一所房子(服务器)的几个门一样,不同的门通向不同的房间(服务器提供的不同服务)。我们常用的FTP默认端口为21,而WWW网页一般默认端口是80。但是有些马虎的 *** 管理员常常打开一些容易被侵入的端口服务,比如139等;还有一些木马程序,比如冰河、BO、广外等都是自动开辟一个您不察觉的端口。那么,只要我们把自己用不到的端口全部封锁起来,不就杜绝了这两种非法入侵吗?
限制端口的 ***
对于个人用户来说,您可以限制所有的端口,因为您根本不必让您的机器对外提供任何服务;而对于对外提供 *** 服务的服务器,我们需把必须利用的端口(比如WWW端口80、FTP端口21、邮件服务端口25、110等)开放,其他的端口则全部关闭。
这里,对于采用Windows 2000或者Windows XP的用户来说,不需要安装任何其他软件,可以利用“TCP/IP筛选”功能限制服务器的端口。具体设置如下:
1、右键点击“网上邻居”,选择“属性”,然后双击“本地连接”(如果是拨号上网用户,选择“我的连接”图标),弹出“本地连接状态”对话框。
2、点击[属性]按钮,弹出“本地连接属性”,选择“此连接使用下列项目”中的“Internet协议(TCP/IP)”,然后点击[属性]按钮。
3、在弹出的“Internet协议(TCP/IP)”对话框中点击[高级]按钮。在弹出的“高级TCP/IP设置”中,选择“选项”标签,选中“TCP/IP筛选”,然后点击[属性]按钮。
4、在弹出的“TCP/IP筛选”对话框里选择“启用TCP/IP筛选”的复选框,然后把左边“TCP端口”上的“只允许”选上(请见附图)。
这样,您就可以来自己添加或删除您的TCP或UDP或IP的各种端口了。
添加或者删除完毕,重新启动机器以后,您的服务器就被保护起来了。
如果只上网浏览的话,可以不添加任何端口。但是要利用一些 *** 联络工具,比如OICQ的话,就要把“4000”这个端口打开,同理,如果发现某个常用的 *** 工具不能起作用的时候,请搞清它在您主机所开的端口,然后在“TCP/IP筛选”中添加端口即可。
参考资料:
python 查看端口是否开通
一、常见端口扫描的原理
0、秘密扫描
秘密扫描是一种不被审计工具所检测的扫描技术。
它通常用于在通过普通的防火墙或路由器的筛选(filtering)时隐藏自己。
秘密扫描能躲避IDS、防火墙、包过滤器和日志审计,从而获取目标端口的开放或关闭的信息。由于没有包含TCP 3次握手协议的任何部分,所以无法被记录下来,比半连接扫描更为隐蔽。
但是这种扫描的缺点是扫描结果的不可靠性会增加,而且扫描主机也需要自己构造IP包。现有的秘密扫描有TCP FIN扫描、TCP ACK扫描、NULL扫描、XMAS扫描和SYN/ACK扫描等。
1、Connect()扫描
此扫描试图与每一个TCP端口进行“三次握手”通信。如果能够成功建立接连,则证明端口开发,否则为关闭。准确度很高,但是最容易被防火墙和IDS检测到,并且在目标主机的日志中会记录大量的连接请求以及错误信息。
TCP connect端口扫描服务端与客户端建立连接成功(目标端口开放)的过程:
① Client端发送SYN;
② Server端返回SYN/ACK,表明端口开放;
③ Client端返回ACK,表明连接已建立;
④ Client端主动断开连接。
建立连接成功(目标端口开放)
TCP connect端口扫描服务端与客户端未建立连接成功(目标端口关闭)过程:
① Client端发送SYN;
② Server端返回RST/ACK,表明端口未开放。
优点:实现简单,对操作者的权限没有严格要求(有些类型的端口扫描需要操作者具有root权限),系统中的任何用户都有权力使用这个调用,而且如果想要得到从目标端口返回banners信息,也只能采用这一 *** 。
另一优点是扫描速度快。如果对每个目标端口以线性的方式,使用单独的connect()调用,可以通过同时打开多个套接字,从而加速扫描。
缺点:是会在目标主机的日志记录中留下痕迹,易被发现,并且数据包会被过滤掉。目标主机的logs文件会显示一连串的连接和连接出错的服务信息,并且能很快地使它关闭。
2、SYN扫描
扫描器向目标主机的一个端口发送请求连接的SYN包,扫描器在收到SYN/ACK后,不是发送的ACK应答而是发送RST包请求断开连接。这样,三次握手就没有完成,无法建立正常的TCP连接,因此,这次扫描就不会被记录到系统日志中。这种扫描技术一般不会在目标主机上留下扫描痕迹。但是,这种扫描需要有root权限。
端口开放:1、Client发送SYN 2、Server端发送SYN/ACK 3、Client发送RST断开(只需要前两步就可以判断端口开放)
端口关闭:1、Client发送SYN 2、Server端回复RST(表示端口关闭)
优点:SYN扫描要比TCP Connect()扫描隐蔽一些,SYN仅仅需要发送初始的SYN数据包给目标主机,如果端口开放,则相应SYN-ACK数据包;如果关闭,则响应RST数据包;
3、NULL扫描
什么是端口?以及端口的设置?COM3是什么端口
端口可分为3大类:
1) 公认端口(Well Known Ports):从0到1023,它们紧密绑定于一些服务。通常这些端口的通讯明确表明了某种服务的协议。例如:80端口实际上总是HTTP通讯。
2) 注册端口(Registered Ports):从1024到49151。它们松散地绑定于一些服务。也就是说有许多服务绑定于这些端口,这些端口同样用于许多其它目的。例如:许多系统处理动态端口从1024左右开始。
3) 动态和/或私有端口(Dynamic and/or Private Ports):从49152到65535。理论上,不应为服务分配这些端口。实际上,机器通常从1024起分配动态端口。但也有例外:SUN的RPC端口从32768开始。
本节讲述通常TCP/UDP端口扫描在防火墙记录中的信息。记住:并不存在所谓ICMP端口。如果你对解读ICMP数据感兴趣,请参看本文的其它部分。
0通常用于分析操作系统。这一 *** 能够工作是因为在一些系统中“0”是无效端口,当你试 图使用一种通常的闭合端口连接它时将产生不同的结果。一种典型的扫描:使用IP地址为 0.0.0.0,设置ACK位并在以太网层广播。
1 tcpmux 这显示有人在寻找SGIIrix机器。Irix是实现tcpmux的主要提供者,缺省情况下tcpmux在这种系统中被打开。Iris机器在发布时含有几个缺省的无密码的帐户,如lp,guest, uucp, nuucp, demos, tutor, diag, EZsetup, OutOfBox, 和4Dgifts。许多管理员安装后忘记删除这些帐户。因此Hacker们在Internet上搜索tcpmux 并利用这些帐户。
7Echo你能看到许多人们搜索Fraggle放大器时,发送到x.x.x.0和x.x.x.255的信息。常见的一种DoS攻击是echo循环(echo-loop),攻击者伪造从一个机器发送到另一个UDP数据包,而两个机器分别以它们最快的方式回应这些数据包。(参见Chargen) 另一种东西是由DoubleClick在词端口建立的TCP连接。有一种产品叫做Resonate Global Dispatch”,它与DNS的这一端口连接以确定最近的路由。Harvest/squid cache将从3130端口发送UDPecho:“如果将cache的source_ping on选项打开,它将对原始主机的UDP echo端口回应一个HIT reply。”这将会产生许多这类数据包。
11 sysstat这是一种UNIX服务,它会列出机器上所有正在运行的进程以及是什么启动了这些进程。这为入侵者提供了许多信息而威胁机器的安全,如暴露已知某些弱点或帐户的程序。这与UNIX系统中“ps”命令的结果相似再说一遍:ICMP没有端口,ICMP port 11通常是ICMPtype=1119 chargen 这是一种仅仅发送字符的服务。UDP版本将会在收到UDP包后回应含有垃圾字符的包。TCP连接时,会发送含有垃圾字符的数据流知道连接关闭。 Hacker利用IP欺骗可以发动DoS攻击伪造两个chargen服务器之间的UDP由于服务器企图回应两个服务器之间的无限的往返数据通讯一个chargen和echo将导致服务器过载。同样 fraggle DoS攻击向目标地址的这个端口广播一个带有伪造受害者IP的数据包,受害者为了回应这些数据而过载。
21 ftp最常见的攻击者用于寻找打开“anonymous”的ftp服务器的 *** 。这些服务器带有可读写的目录。Hackers或tackers利用这些服务器作为传送warez (私有程序) 和pr0n(故意拼错词而避免被搜索引擎分类)的节点。
22 sshPcAnywhere建立TCP和这一端口的连接可能是为了寻找ssh。这一服务有许多弱点。如果配置成特定的模式,许多使用RSAREF库的版本有不少漏洞。(建议在其它端口运行ssh)还应该注意的是ssh工具包带有一个称为ake-ssh-known-hosts的程序。它会扫描整个域的 ssh主机。你有时会被使用这一程序的人无意中扫描到。UDP(而不是TCP)与另一端的5632端口相连意味着存在搜索pcAnywhere的扫描。 5632 (十六进制的0x1600)位交换后是0x0016(使进制的22)。
23 Telnet入侵者在搜索远程登陆UNIX的服务。大多数情况下入侵者扫描这一端口是为了找到机器运行的操作系统。此外使用其它技术,入侵者会找到密码。
25 *** tp攻击者(spammer)寻找 *** TP服务器是为了传递他们的spam。入侵者的帐户总被关闭,他们需要拨号连接到高带宽的e-mail服务器上,将简单的信息传递到不同的地址。 *** TP服务器(尤其是sendmail)是进入系统的最常用 *** 之一,因为它们必须完整的暴露于Internet且邮件的路由是复杂的(暴露+复杂=弱点)。
53 DNSHacker或crackers可能是试图进行区域传递(TCP),欺骗DNS(UDP)或隐藏其它通讯。因此防火墙常常过滤或记录53端口。需要注意的是你常会看到53端口做为UDP源端口。不稳定的防火墙通常允许这种通讯并假设这是对DNS查询的回复。Hacker常使用这种 *** 穿透防火墙。
67和68 Bootp和DHCPUDP上的Bootp/DHCP:通过DSL和cable-modem的防火墙常会看见大量发送到广播地址 255.255.255.255的数据。这些机器在向DHCP服务器请求一个地址分配。Hacker常进入它们分配一个地址把自己作为局部路由器而发起大量的“中间人”(man-in-middle)攻击。客户端向68端口(bootps)广播请求配置,服务器向67端口(bootpc)广播回应请求。这种回应使用广播是因为客户端还不知道可以发送的IP地址。
69 TFTP(UDP) 许多服务器与bootp一起提供这项服务,便于从系统下载启动代码。但是它们常常错误配置而从系统提供任何文件,如密码文件。它们也可用于向系统写入文件。
79 finger Hacker用于获得用户信息,查询操作系统,探测已知的缓冲区溢出错误,回应从自己机器到其它机器finger扫描。
98 linuxconf 这个程序提供linuxboxen的简单管理。通过整合的HTTP服务器在98端口提供基于Web界面的服务。它已发现有许多安全问题。一些版本 setuidroot,信任局域网,在/tmp下建立Internet可访问的文件,LANG环境变量有缓冲区溢出。此外因为它包含整合的服务器,许多典型的HTTP漏洞可能存在(缓冲区溢出,历遍目录等)
109 POP2并不象POP3那样有名,但许多服务器同时提供两种服务(向后兼容)。在同一个服务器上POP3的漏洞在POP2中同样存在。
110 POP3用于客户端访问服务器端的邮件服务。POP3服务有许多公认的弱点。关于用户名和密码交换缓冲区溢出的弱点至少有20个(这意味着Hacker可以在真正登陆前进入系统)。成功登陆后还有其它缓冲区溢出错误。
111 sunrpc portmap rpcbind Sun RPCPortMapper/RPCBIND。访问portmapper是扫描系统查看允许哪些RPC服务的最早的一步。常见RPC服务有:pc.mountd, NFS, rpc.statd, rpc.c *** d, rpc.ttybd, amd等。入侵者发现了允许的RPC服务将转向提供 服务的特定端口测试漏洞。记住一定要记录线路中的daemon, IDS, 或sniffer,你可以发现入侵者正使用什么程序访问以便发现到底发生了什么。
113 Ident auth .这是一个许多机器上运行的协议,用于鉴别TCP连接的用户。使用标准的这种服务可以获得许多机器的信息(会被Hacker利用)。但是它可作为许多服务的记录器,尤其是FTP, POP, IMAP, *** TP和IRC等服务。通常如果有许多客户通过防火墙访问这些服务,你将会看到许多这个端口的连接请求。记住,如果你阻断这个端口客户端会感觉到在防火墙另一边与e-mail服务器的缓慢连接。许多防火墙支持在TCP连接的阻断过程中发回T,着将回停止这一缓慢的连接。
119 NNTP news新闻组传输协议,承载USENET通讯。当你链接到诸如:news:p.security.firewalls/. 的地址时通常使用这个端口。这个端口的连接企图通常是人们在寻找USENET服务器。多数ISP限制只有他们的客户才能访问他们的新闻组服务器。打开新闻组服务器将允许发/读任何人的帖子,访问被限制的新闻组服务器,匿名发帖或发送spam。
135 oc-serv MS RPC end-point mapper Microsoft在这个端口运行DCE RPC end- point mapper为它的DCOM服务。这与UNIX 111端口的功能很相似。使用DCOM和/或RPC的服务利用 机器上的end-point mapper注册它们的位置。远端客户连接到机器时,它们查询end-point mapper找到服务的位置。同样Hacker扫描机器的这个端口是为了找到诸如:这个机器上运 行Exchange Server吗?是什么版本?这个端口除了被用来查询服务(如使用epdump)还可以被用于直接攻击。有一些DoS攻击直接针对这个端口。
137 NetBIOS name service nbtstat (UDP)这是防火墙管理员最常见的信息,请仔细阅读文章后面的NetBIOS一节 139 NetBIOS File and Print Sharing 通过这个端口进入的连接试图获得NetBIOS/ *** B服务。这个协议被用于Windows“文件和打印机共享”和SAMBA。在Internet上共享自己的硬盘是可能是最常见的问题。 大量针对这一端口始于1999,后来逐渐变少。2000年又有回升。一些VBS(IE5 VisualBasicScripting)开始将它们自己拷贝到这个端口,试图在这个端口繁殖。
143 IMAP和上面POP3的安全问题一样,许多IMAP服务器有缓冲区溢出漏洞运行登陆过程中进入。记住:一种Linux蠕虫(admw0rm)会通过这个端口繁殖,因此许多这个端口的扫描来自不知情的已被感染的用户。当RadHat在他们的Linux发布版本中默认允许IMAP后,这些漏洞变得流行起来。 Morris蠕虫以后这还是之一次广泛传播的蠕虫。这一端口还被用于IMAP2,但并不流行。 已有一些报道发现有些0到143端口的攻击源于脚本。
161 SNMP(UDP)入侵者常探测的端口。SNMP允许远程管理设备。所有配置和运行信息都储存在数据库中,通过SNMP客获得这些信息。许多管理员错误配置将它们暴露于Internet。Crackers将试图使用缺省的密码“public”“private”访问系统。他们可能会试验所有可能的组合。 SNMP包可能会被错误的指向你的 *** 。Windows机器常会因为错误配置将HP JetDirect rmote management软件使用SNMP。HP OBJECT IDENTIFIER将收到SNMP包。新版的Win98使用SNMP解析域名,你会看见这种包在子网内广播(cable modem, DSL)查询sysName和其它信息。
162 SNMP trap 可能是由于错误配置。
177 xdmcp 许多Hacker通过它访问X-Windows控制台,它同时需要打开6000端口。
513 rwho 可能是从使用cable modem或DSL登陆到的子网中的UNIX机器发出的广播。这些人为Hacker进入他们的系统提供了很有趣的信息。
553 CORBA IIOP (UDP) 如果你使用cable modem或DSL VLAN,你将会看到这个端口的广播。CORBA是一种面向对象的RPC(remote procedure call)系统。Hacker会利用这些信息进入系统。
600 Pcserver backdoor 请查看1524端口一些玩script的孩子认为他们通过修改ingreslock和pcserver文件已经完全攻破了系统-- Alan J. Rosenthal.
635 mountd Linux的mountd Bug。这是人们扫描的一个流行的Bug。大多数对这个端口的扫描是基于UDP的,但基于TCP 的mountd有所增加(mountd同时运行于两个端口)。记住,mountd可运行于任何端口(到底在哪个端口,需要在端口111做portmap查询),只是Linux默认为635端口,就象NFS通常运行于2049端口1024 许多人问这个端口是干什么的。它是动态端口的开始。许多程序并不在乎用哪个端口连接 *** ,它们请求操作系统为它们分配“下一个闲置端口”。基于这一点分配从端口1024开始。这意味着之一个向系统请求分配动态端口的程序将被分配端口1024。为了验证这一点,你可以重启机器,打开Telnet,再打开一个窗口运行“natstat -a”,你将会看到Telnet被分配1024端口。请求的程序越多,动态端口也越多。操作系统分配的端口将逐渐变大。再来一遍,当你浏览Web页时用 “netstat”查看,每个Web页需要一个新端口。
1080 SOCKS 这一协议以管道方式穿过防火墙,允许防火墙后面的许多人通过一个IP地址访问Internet。理论上它应该只允许内部的通信向外达到Internet。但是由于错误的配置,它会允许Hacker/Cracker的位于防火墙外部的攻击穿过防火墙。或者简单地回应位于Internet上的计算机,从而掩饰他们对你的直接攻击。WinGate是一种常见的Windows个人防火墙,常会发生上述的错误配置。在加入IRC聊天室时常会看到这种情况。
1114 SQL 系统本身很少扫描这个端口,但常常是sscan脚本的一部分。
1524 ingreslock后门 许多攻击脚本将安装一个后门Sh*ll 于这个端口(尤其是那些针对Sun系统中Sendmail和RPC服务漏洞的脚本,如statd,ttdbserver和cmsd)。如果你刚刚安装了你的防火墙就看到在这个端口上的连接企图,很可能是上述原因。你可以试试Telnet到你的机器上的这个端口,看看它是否会给你一个Sh*ll 。连接到600/pcserver也存在这个问题。
2049 NFS NFS程序常运行于这个端口。通常需要访问portmapper查询这个服务运行于哪个端口,可以闭开portmapper直接测试这个端口。
3128 squid 这是Squid HTTP *** 服务器的默认端口。攻击者扫描这个端口是为了搜寻一个 *** 服务器而匿名访问Internet。你也会看到搜索其它 *** 服务器的端口:
000/8001/8080/8888。扫描这一端口的另一原因是:用户正在进入聊天室。其它用户(或服务器本身)也会检验这个端口以确定用户的机器是否支持 *** 。
5632 pcAnywere你会看到很多这个端口的扫描,这依赖于你所在的位置。当用户打开pcAnywere时,它会自动扫描局域网C类网以寻找可能得 *** (译者:指agent而不是proxy)。Hacker/cracker也会寻找开放这种服务的机器,所以应该查看这种扫描的源地址。一些搜寻 pcAnywere的扫描常包含端口22的UDP数据包。参见拨号扫描。
6776 Sub-7 artifact 这个端口是从Sub-7主端口分离出来的用于传送数据的端口。例如当控制者通过 *** 线控制另一台机器,而被控机器挂断时你将会看到这种情况。因此当另一人以此IP拨入时,他们将会看到持续的,在这个端口的连接企图。(译者:即看到防火墙报告这一端口的连接企图时,并不表示你已被Sub-7控制。)
6970 RealAudio RealAudio客户将从服务器的6970-7170的UDP端口接收音频数据流。这是由TCP7070端口外向控制连接设置13223 PowWow PowWow 是Tribal Voice的聊天程序。它允许用户在此端口打开私人聊天的接。这一程序对于建立连接非常具有“进攻性”。它会“驻扎”在这一TCP端口等待回应。这造成类似心跳间隔的连接企图。如果你是一个拨号用户,从另一个聊天者手中“继承”了IP地址这种情况就会发生:好象很多不同的人在测试这一端口。这一协议使用 “OPNG”作为其连接企图的前四个字节。
17027 Conducent这是一个外向连接。这是由于公司内部有人安装了带有Conducent "adbot" 的共享软件。 Conducent "adbot"是为共享软件显示广告服务的。使用这种服务的一种流行的软件是Pkware。有人试验:阻断这一外向连接不会有任何问题,但是封掉IP地址本身将会导致adbots持续在每秒内试图连接多次而导致连接过载:机器会不断试图解析DNS名—ads.conducent.com,即IP地址216.33.210.40 ;
216.33.199.77 ;216.33.199.80 ;216.33.199.81;216.33.210.41。(译者:不知NetAnts使用的Radiate是否也有这种现象)
30100 NetSphere木马(TCP) 通常这一端口的扫描是为了寻找中了NetSphere木马。
31337 Back Orifice “eliteHacker中31337读做“elite”/ei’li:t/(译者:法语,译为中坚力量,精华。即 3=E, 1=L, 7=T)。因此许多后门程序运行于这一端口。其中最有名的是Back Orifice。曾经一段时间内这是Internet上最常见的扫描。现在它的流行越来越少,其它的 木马程序越来越流行。
31789 Hack-a-tack 这一端口的UDP通讯通常是由于"Hack-a-tack"远程访问木马(RAT,Remote Access Trojan)。这种木马包含内置的31790端口扫描器,因此任何31789端口到317890端口的连接意味着已经有这种入侵。(31789端口是控制连接,317890端口是文件传输连接)
32770~32900 RPC服务 Sun Solaris的RPC服务在这一范围内。详细的说:早期版本的Solaris(2.5.1之前)将 portmapper置于这一范围内,即使低端口被防火墙封闭仍然允许Hacker/cracker访问这一端口。扫描这一范围内的端口不是为了寻找portmapper,就是为了寻找可被攻击的已知的RPC服务。
33434~33600 traceroute 如果你看到这一端口范围内的UDP数据包(且只在此范围之内)则可能是由于traceroute。
41508 Inoculan早期版本的Inoculan会在子网内产生大量的UDP通讯用于识别彼此。参见
端口1~1024是保留端口,所以它们几乎不会是源端口。但有一些例外,例如来自NAT机器的连接。 常看见紧接着1024的端口,它们是系统分配给那些并不在乎使用哪个端口连接的应用程序的“动态端口”。
Server Client 服务描述
1-5/tcp 动态 FTP 1-5端口意味着sscan脚本
20/tcp 动态 FTP FTP服务器传送文件的端口
53 动态 FTP DNS从这个端口发送UDP回应。你也可能看见源/目标端口的TCP连接。
123 动态 S/NTP 简单 *** 时间协议(S/NTP)服务器运行的端口。它们也会发送到这个端口的广播。
27910~27961/udp 动态 Quake Quake或Quake引擎驱动的游戏在这一端口运行其服务器。因此来自这一端口范围的UDP包或发送至这一端口范围的UDP包通常是游戏。
61000以上 动态 FTP 61000以上的端口可能来自Linux NAT服务器
0条大神的评论