常见的 *** 攻击类型_常见的 *** 层攻击有

hacker|
252

常见的 *** 攻击 *** 和防御技术

*** 攻击类型

侦查攻击:

搜集 *** 存在的弱点,以进一步攻击 *** 。分为扫描攻击和 *** 监听。

扫描攻击:端口扫描,主机扫描,漏洞扫描。

*** 监听:主要指只通过软件将使用者计算机网卡的模式置为混杂模式,从而查看通过此 *** 的重要明文信息。

端口扫描:

根据 TCP 协议规范,当一台计算机收到一个TCP 连接建立请求报文(TCP SYN) 的时候,做这样的处理:

1、如果请求的TCP端口是开放的,则回应一个TCP ACK 报文, 并建立TCP连接控制结构(TCB);

2、如果请求的TCP端口没有开放,则回应一个TCP RST(TCP头部中的RST标志设为1)报文,告诉发起计算机,该端口没有开放。

相应地,如果IP协议栈收到一个UDP报文,做如下处理:

1、如果该报文的目标端口开放,则把该UDP 报文送上层协议(UDP ) 处理, 不回应任何报文(上层协议根据处理结果而回应的报文例外);

2、如果该报文的目标端口没有开放,则向发起者回应一个ICMP 不可达报文,告诉发起者计算机该UDP报文的端口不可达。

利用这个原理,攻击者计算机便可以通过发送合适的报文,判断目标计算机哪些TC 或UDP端口是开放的。

过程如下:

1、发出端口号从0开始依次递增的TCP SYN或UDP报文(端口号是一个16比特的数字,这样更大为65535,数量很有限);

2、如果收到了针对这个TCP 报文的RST 报文,或针对这个UDP 报文 的 ICMP 不可达报文,则说明这个端口没有开放;

3、相反,如果收到了针对这个TCP SYN报文的ACK报文,或者没有接收到任何针对该UDP报文的ICMP报文,则说明该TCP端口是开放的,UDP端口可能开放(因为有的实现中可能不回应ICMP不可达报文,即使该UDP 端口没有开放) 。

这样继续下去,便可以很容易的判断出目标计算机开放了哪些TCP或UDP端口,然后针对端口的具体数字,进行下一步攻击,这就是所谓的端口扫描攻击。

主机扫描即利用ICMP原理搜索 *** 上存活的主机。

*** 踩点(Footprinting)

攻击者事先汇集目标的信息,通常采用whois、Finger等工具和DNS、LDAP等协议获取目标的一些信息,如域名、IP地址、 *** 拓扑结构、相关的用户信息等,这往往是黑客入侵之前所做的之一步工作。

扫描攻击

扫描攻击包括地址扫描和端口扫描等,通常采用ping命令和各种端口扫描工具,可以获得目标计算机的一些有用信息,例如机器上打开了哪些端口,这样就知道开设了哪些服务,从而为进一步的入侵打下基础。

协议指纹

黑客对目标主机发出探测包,由于不同操作系统厂商的IP协议栈实现之间存在许多细微的差别(也就是说各个厂家在编写自己的TCP/IP 协议栈时,通常对特定的RFC指南做出不同的解释),因此各个操作系统都有其独特的响应 *** ,黑客经常能确定出目标主机所运行的操作系统。

常常被利用的一些协议栈指纹包括:TTL值、TCP窗口大小、DF 标志、TOS、IP碎片处理、 ICMP处理、TCP选项处理等。

信息流监视

这是一个在共享型局域网环境中最常采用的 *** 。

由于在共享介质的 *** 上数据包会经过每个 *** 节点, 网卡在一般情况下只会接受发往本机地址或本机所在广播(或多播)地址的数据包,但如果将网卡设置为混杂模式(Promiscuous),网卡就会接受所有经过的数据包。

基于这样的原理,黑客使用一个叫sniffer的嗅探器装置,可以是软件,也可以是硬件)就可以对 *** 的信息流进行监视,从而获得他们感兴趣的内容,例如口令以及其他秘密的信息。

访问攻击

密码攻击:密码暴力猜测,特洛伊木马程序,数据包嗅探等方式。中间人攻击:截获数据,窃听数据内容,引入新的信息到会话,会话劫持(session hijacking)利用TCP协议本身的不足,在合法的通信连接建立后攻击者可以通过阻塞或摧毁通信的一方来接管已经过认证建立起来的连接,从而假冒被接管方与对方通信。

拒绝服务攻击

伪装大量合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务响应。

要避免系统遭受DoS 攻击,从前两点来看, *** 管理员要积极谨慎地维护整个系统,确保无安全隐患和漏洞;

而针对第四点第五点的恶意攻击方式则需要安装防火墙等安 全设备过滤DoS攻击,同时强烈建议 *** 管理员定期查看安全设备的日志,及时发现对系统存在安全威胁的行为。

常见拒绝服务攻击行为特征与防御 ***

拒绝服务攻击是最常见的一类 *** 攻击类型。

在这一攻击原理下,它又派生了许多种不同的攻击方式。

正确了解这些不同的拒绝攻击方式,就可以为正确、系统地为自己所在企业部署完善的安全防护系统。

入侵检测的最基本手段是采用模式匹配的 *** 来发现入侵攻击行为。

要有效的进行反攻击,首先必须了解入侵的原理和工作机理,只有这样才能做到知己知彼,从而有效的防止入侵攻击行为的发生。

下面我们针对几种典型的拒绝服务攻击原理进行简要分析,并提出相应的对策。

死亡之Ping( Ping of death)攻击

由于在早期的阶段,路由器对包的更大大小是有限制的,许多操作系统TCP/IP栈规定ICMP包的大小限制在64KB 以内。

在对ICMP数据包的标题头进行读取之后,是根据该标题头里包含的信息来为有效载荷生成缓冲区。

当大小超过64KB的ICMP包,就会出现内存分配错误,导致TCP/IP堆栈崩溃,从而使接受方计算机宕机。

这就是这种“死亡之Ping”攻击的原理所在。

根据这一攻击原理,黑客们只需不断地通过Ping命令向攻击目标发送超过64KB的数据包,就可使目标计算机的TCP/IP堆栈崩溃,致使接受方宕机。

防御 *** :

现在所有的标准TCP/IP协议都已具有对付超过64KB大小数据包的处理能力,并且大多数防火墙能够通过对数据包中的信息和时间间隔分析,自动过滤这些攻击。

Windows 98 、Windows NT 4.0(SP3之后)、Windows 2000/XP/Server 2003 、Linux 、Solaris和Mac OS等系统都已具有抵抗一般“Ping of death ”拒绝服务攻击的能力。

此外,对防火墙进行配置,阻断ICMP 以及任何未知协议数据包,都可以防止此类攻击发生。

泪滴( teardrop)攻击

对于一些大的IP数据包,往往需要对其进行拆分传送,这是为了迎合链路层的MTU(更大传输单元)的要求。

比如,一个6000 字节的IP包,在MTU为2000的链路上传输的时候,就需要分成三个IP包。

在IP 报头中有一个偏移字段和一个拆分标志(MF)。

如果MF标志设置为1,则表面这个IP包是一个大IP包的片断,其中偏移字段指出了这个片断在整个 IP包中的位置。

例如,对一个6000字节的IP包进行拆分(MTU为2000),则三个片断中偏移字段的值依次为:0,2000,4000。

这样接收端在全部接收完IP数据包后,就可以根据这些信息重新组装没正确的值,这样接收端在收后这些分拆的数据包后就不能按数据包中的偏移字段值正确重合这些拆分的数据包,但接收端会不断偿试,这样就可能致使目标计算朵操作系统因资源耗尽而崩溃。

泪滴攻击利用修改在TCP/IP 堆栈实现中信任IP碎片中的包的标题头所包含的信息来实现自己的攻击。

IP分段含有指示该分段所包含的是原包的哪一段的信息,某些操作系统(如SP4 以前的 Windows NT 4.0 )的TCP/IP 在收到含有重叠偏移的伪造分段时将崩溃,不过新的操作系统已基本上能自己抵御这种攻击了。

防御 *** :

尽可能采用最新的操作系统,或者在防火墙上设置分段重组功能,由防火墙先接收到同一原包中的所有拆分数据包,然后完成重组工作,而不是直接转发。

因为防火墙上可以设置当出现重叠字段时所采取的规则。

TCP SYN 洪水(TCP SYN Flood)攻击

TCP/IP栈只能等待有限数量ACK(应答)消息,因为每台计算机用于创建TCP/IP连接的内存缓冲区都是非常有限的。

如果这一缓冲区充满了等待响应的初始信息,则该计算机就会对接下来的连接停止响应,直到缓冲区里的连接超时。

TCP SYN 洪水攻击正是利用了这一系统漏洞来实施攻击的。

攻击者利用伪造的IP地址向目标发出多个连接(SYN)请求。

目标系统在接收到请求后发送确认信息,并等待回答。

由于黑客们发送请示的IP地址是伪造的,所以确认信息也不会到达任何计算机,当然也就不会有任何计算机为此确认信息作出应答了。

而在没有接收到应答之前,目标计算机系统是不会主动放弃的,继续会在缓冲区中保持相应连接信息,一直等待。

当达到一定数量的等待连接后,缓区部内存资源耗尽,从而开始拒绝接收任何其他连接请求,当然也包括本来属于正常应用的请求,这就是黑客们的最终目的。

防御 *** :

在防火墙上过滤来自同一主机的后续连接。

不过“SYN洪水攻击”还是非常令人担忧的,由于此类攻击并不寻求响应,所以无法从一个简单高容量的传输中鉴别出来。

防火墙的具体抵御TCP SYN 洪水攻击的 *** 在防火墙的使用手册中有详细介绍。

Land 攻击

这类攻击中的数据包源地址和目标地址是相同的,当操作系统接收到这类数据包时,不知道该如何处理,或者循环发送和接收该数据包,以此来消耗大量的系统资源,从而有可能造成系统崩溃或死机等现象。

防御 *** :

这类攻击的检测 *** 相对来说比较容易,因为它可以直接从判断 *** 数据包的源地址和目标地址是否相同得出是否属于攻击行为。

反攻击的 *** 当然是适当地配置防火墙设备或包过滤路由器的包过滤规则。

并对这种攻击进行审计,记录事件发生的时间,源主机和目标主机的MAC地址和IP地址,从而可以有效地分析并跟踪攻击者的来源。

Smurf 攻击

这是一种由有趣的卡通人物而得名的拒绝服务攻击。

Smurf攻击利用多数路由器中具有同时向许多计算机广播请求的功能。

攻击者伪造一个合法的IP地址,然后由 *** 上所有的路由器广播要求向受攻击计算机地址做出回答的请求。

由于这些数据包表面上看是来自已知地址的合法请求,因此 *** 中的所有系统向这个地址做出回答,最终结果可导致该 *** 的所有主机都对此ICMP应答请求作出答复,导致 *** 阻塞,这也就达到了黑客们追求的目的了。

这种Smurf攻击比起前面介绍的“Ping of Death ”洪水的流量高出一至两个数量级,更容易攻击成功。

还有些新型的Smurf攻击,将源地址改为第三方的受害者(不再采用伪装的IP地址),最终导致第三方雪崩。

防御 *** :

关闭外部路由器或防火墙的广播地址特性,并在防火墙上设置规则,丢弃掉ICMP协议类型数据包。

Fraggle 攻击

Fraggle 攻击只是对Smurf 攻击作了简单的修改,使用的是UDP协议应答消息,而不再是ICMP协议了(因为黑客们清楚 UDP 协议更加不易被用户全部禁止)。

同时Fraggle攻击使用了特定的端口(通常为7号端口,但也有许多使用其他端口实施 Fraggle 攻击的),攻击与Smurf 攻击基本类似,不再赘述。

防御 *** :

关闭外部路由器或防火墙的广播地址特性。在防火墙上过滤掉UDP报文,或者屏蔽掉一些常被黑客们用来进Fraggle攻击的端口。

电子邮件炸弹

电子邮件炸弹是最古老的匿名攻击之一,通过设置一台计算机不断地向同一地址发送大量电子邮件来达到攻击目的,此类攻击能够耗尽邮件接受者 *** 的带宽资源。

防御 *** :

对邮件地址进行过滤规则配置,自动删除来自同一主机的过量或重复的消息。

虚拟终端(VTY)耗尽攻击

这是一种针对 *** 设备的攻击,比如路由器,交换机等。

这些 *** 设备为了便于远程管理,一般设置了一些TELNET用户界面,即用户可以通过TELNET到该设备上,对这些设备进行管理。

一般情况下,这些设备的TELNET用户界面个数是有限制的。比如,5个或10个等。

这样,如果一个攻击者同时同一台 *** 设备建立了5个或10个TELNET连接。

这些设备的远程管理界面便被占尽,这样合法用户如果再对这些设备进行远程管理,则会因为TELNET连接资源被占用而失败。

ICMP洪水

正常情况下,为了对 *** 进行诊断,一些诊断程序,比如PING等,会发出ICMP响应请求报文(ICMP ECHO),接收计算机接收到ICMP ECHO 后,会回应一个ICMP ECHO Reply 报文。

而这个过程是需要CPU 处理的,有的情况下还可能消耗掉大量的资源。

比如处理分片的时候。这样如果攻击者向目标计算机发送大量的ICMP ECHO报文(产生ICMP洪水),则目标计算机会忙于处理这些ECHO 报文,而无法继续处理其它的 *** 数据报文,这也是一种拒绝服务攻击(DOS)。

WinNuke 攻击

NetBIOS 作为一种基本的 *** 资源访问接口,广泛的应用于文件共享,打印共享, 进程间通信( IPC),以及不同操作系统之间的数据交换。

一般情况下,NetBIOS 是运行在 LLC2 链路协议之上的,是一种基于组播的 *** 访问接口。

为了在TCP/IP协议栈上实现NetBIOS ,RFC规定了一系列交互标准,以及几个常用的 TCP/UDP 端口:

139:NetBIOS 会话服务的TCP 端口;

137:NetBIOS 名字服务的UDP 端口;

136:NetBIOS 数据报服务的UDP 端口。

WINDOWS操作系统的早期版本(WIN95/98/NT )的 *** 服务(文件共享等)都是建立在NetBIOS之上的。

因此,这些操作系统都开放了139端口(最新版本的WINDOWS 2000/XP/2003 等,为了兼容,也实现了NetBIOS over TCP/IP功能,开放了139端口)。

WinNuke 攻击就是利用了WINDOWS操作系统的一个漏洞,向这个139端口发送一些携带TCP带外(OOB)数据报文。

但这些攻击报文与正常携带OOB数据报文不同的是,其指针字段与数据的实际位置不符,即存在重合,这样WINDOWS操作系统在处理这些数据的时候,就会崩溃。

分片 IP 报文攻击

为了传送一个大的IP报文,IP协议栈需要根据链路接口的MTU对该IP报文进行分片,通过填充适当的IP头中的分片指示字段,接收计算机可以很容易的把这些IP 分片报文组装起来。

目标计算机在处理这些分片报文的时候,会把先到的分片报文缓存起来,然后一直等待后续的分片报文。

这个过程会消耗掉一部分内存,以及一些IP协议栈的数据结构。

如果攻击者给目标计算机只发送一片分片报文,而不发送所有的分片报文,这样攻击者计算机便会一直等待(直到一个内部计时器到时)。

如果攻击者发送了大量的分片报文,就会消耗掉目标计 算机的资源,而导致不能相应正常的IP报文,这也是一种DOS攻击。

T

分段攻击。利用了重装配错误,通过将各个分段重叠来使目标系统崩溃或挂起。

欢迎关注的我的头条号,私信交流,学习更多的 *** 技术!

网上常见攻击类型有哪几种?各有什么特点?

虽然黑客攻击的手法多种多样,但就目前来说,绝大多数中初级黑客们所采用的手法和工具仍具有许多共性。从大的方面来划分的话,归纳起来一般不外乎以下几种:1、 *** 报文嗅探 *** 嗅探其实最开始是应用于 *** 管理的,就像远程控制软件一样,但随着黑客们的发现,这些强大的功能就开始被客们利用。最普遍的安全威胁来自内部,同时这些威胁通常都是致命的,其破坏性也远大于外部威胁。其中 *** 嗅探对于安全防护一般的 *** 来说,使用这种 *** 操作简单,而且同时威胁巨大。很多黑客也使用嗅探器进行 *** 入侵的渗透。 *** 嗅探器对信息安全的威胁来自其被动性和非干扰性,使得 *** 嗅探具有很强的隐蔽性,往往让 *** 信息泄密变得不容易被发现。

嗅探器是利用计算机的 *** 接口,截获目的计算机数据报文的一种技术。不同传输介质的 *** 的可监听性是不同的。一般来说,以太网被监听的可能性比较高,因为以太网是一个广播型的 *** ;FDDI Token被监听的可能性也比较高,尽管它不是一个广播型 *** ,但带有令牌的那些数据包在传输过程中,平均要经过 *** 上一半的计算机;微波和无线网被监听的可能性同样比较高,因为无线电本身是一个广播型的传输媒介,弥散在空中的无线电信号可以被很轻易的截获。

嗅探器工作在 *** 的底层,把受影视的计算机的 *** 传输全部数据记录下来。虽然嗅探器经常初网管员用来进行 *** 管理,可以帮助 *** 管理员查找 *** 漏洞和检测 *** 性能、分析 *** 的流量,以便找出所关心的 *** 中潜在的问题。但目前却在黑客中的应用似乎更加广泛,使人们开始对这类工具敬而远之。2、地址欺骗IP地址欺骗攻击是黑客们假冒受信主机(要么是通过使用你 *** IP地址范围内的IP,要么是通过使用你信任,并可提供特殊资源位置访问的外部IP地址)对目标进行攻击。在这种攻击中,受信主机指的是你拥有管理控制权的主机或你可明确做出“信任”决定允许其访问你 *** 的主机。通常,这种IP地址欺骗攻击局限于把数据或命令注入到客户/服务应用之间,或对等 *** 连接传送中已存在的数据流。为了达到双向通讯,攻击者必须改变指向被欺骗IP地址的所有路由表。 IP地址攻击可以欺骗防火墙,实现远程攻击。以上介绍的报文嗅探,IP欺骗的攻击者不限于外部 *** ,在内部 *** 中同样可能发生,所以在企业 *** 内部同样要做好相关防御措施。 3、密码攻击 密码攻击通过多种不同 *** 实现,包括蛮力攻击(brute force attack),特洛伊木马程序,IP欺骗和报文嗅探。尽管报文嗅探和IP欺骗可以捕获用户账号和密码,但密码攻击通常指的反复的试探、验证用户账号或密码。这种反复试探称之为蛮力攻击。通常蛮力攻击使用运行于 *** 上的程序来执行,并企图注册到共享资源中,例如服务器。当攻击者成功的获得了资源的访问权,他就拥有了和那些账户被危及以获得其资源访问权的用户有相同的权利。如果这些账户有足够夺得特权,攻击者可以为将来的访问创建一个后门,这样就不用担心被危及用户账号的任何身份和密码的改变。 4、拒绝服务攻击 拒绝服务(Denial of Service,DoS)攻击是目前最常见的一种攻击类型。从 *** 攻击的各种 *** 和所产生的破坏情况来看,DoS算是一种很简单,但又很有效的进攻方式。它的目的就是拒绝你的服务访问,破坏组织的正常运行,最终使你的 *** 连接堵塞,或者服务器因疲于处理攻击者发送的数据包而使服务器系统的相关服务崩溃、系统资源耗尽。

DoS的攻击方式有很多种,最基本的DoS攻击就是利用合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务。DoS攻击的基本过程:首先攻击者向服务器发送众多的带有虚假地址的请求,服务器发送回复信息后等待回传信息。由于地址是伪造的,所以服务器一直等不到回传的消息,然而服务器中分配给这次请求的资源就始终没有被释放。当服务器等待一定的时间后,连接会因超时而被切断,攻击者会再度传送新的一批请求,在这种反复发送伪地址请求的情况下,服务器资源最终会被耗尽。

这类攻击和其他大部分攻击不同的是,因为他们不是以获得 *** 或 *** 上信息的访问权为目的,而是要使受攻击方耗尽 *** 、操作系统或应用程序有限的资源而崩溃,不能为其他正常其他用户提供服务为目标。这就是这类攻击被称之为“拒绝服务攻击”的真正原因。

当涉及到特殊的 *** 服务应用,象HTTP或FTP服务,攻击者能够获得并保持所有服务器支持的有用连接,有效地把服务器或服务的真正使用者拒绝在外面。大部分拒绝服务攻击是使用被攻击系统整体结构上的弱点,而不是使用软件的小缺陷或安全漏洞。然而,有些攻击通过采用不希望的、无用的 *** 报文掀起 *** 风暴和提供错误的 *** 资源状态信息危及 *** 的性能。

DDoS(Distributed Denial of Service,分布式拒绝服务)是一种基于DoS的特殊形式的分布、协作式的大规模拒绝服务攻击。也就是说不再是单一的服务攻击,而是同时实施几个,甚至十几个不同服务的拒绝攻击。由此可见,它的攻击力度更大,危害性当然也更大了。它主要瞄准比较大的网站,象商业公司,搜索引擎和 *** 部门的Web站点。

要避免系统遭受DoS攻击,从前两点来看, *** 管理员要积极谨慎地维护整个系统,确保无安全隐患和漏洞;而针对第三点的恶意攻击方式则需要安装防火墙等安全设备过滤DoS攻击,同时强烈建议 *** 管理员定期查看安全设备的日志,及时发现对系统存在安全威胁的行为。 5、应用层攻击 应用层攻击能够使用多种不同的 *** 来实现,最平常的 *** 是使用服务器上通常可找到的应用软件(如SQL Server、Sendmail、PostScript和FTP)缺陷。通过使用这些缺陷,攻击者能够获得计算机的访问权,以及该计算机上运行相应应用程序所需账户的许可权。

应用层攻击的一种最新形式是使用许多公开化的新技术,如HTML规范、Web浏览器的操作性和HTTP协议等。这些攻击通过 *** 传送有害的程序,包括JAVA applet和Active X控件等,并通过用户的浏览器调用它们,很容易达到入侵、攻击的目的。虽然微软公司前段时间提供的代码验证技术可以使用户的Active X控件因安全检查错误而暂停这类攻击,但攻击者已经发现怎样利用适当标记和有大量漏洞的Active X控件使之作为特洛伊木马实施新的攻击方式。这一技术可使用VBScript脚本程序直接控制执行隐蔽任务,如覆盖文件,执行其他文件等,预防、查杀的难度更大。

在应用层攻击中,容易遭受攻击的目标包括路由器、数据库、Web和FTP服务器和与协议相关的服务,如DNS、WINS和 *** B。

*** 中常见的攻击手段主要有哪些?

目前造成 *** 不安全的主要因素是系统、协议及数据库等的设计上存在缺陷。由于当今的计算机 *** 操作系统在本身结构设计和代码设计时偏重考虑系统使用时的方便性,导致了系统在远程访问、权限控制和口令管理等许多方面存在安全漏洞。

其他 *** 攻击行为的防范措施:

协议攻击和拒绝服务攻击是黑客惯于使用的攻击 *** ,但随着 *** 技术的飞速发展,攻击行为千变万化,新技术层出不穷。下面将阐述一下 *** 嗅探及缓冲区溢出的攻击原理及防范措施。

1、针对 *** 嗅探的防范措施:

*** 嗅探就是使 *** 接口接收不属于本主机的数据。计算机 *** 通常建立在共享信道上,以太网就是这样一个共享信道的 *** ,其数据报头包含目的主机的硬件地址,只有硬件地址匹配的机器才会接收该数据包。一个能接收所有数据包的机器被称为杂错节点。通常账户和口令等信息都以明文的形式在以太网上传输,一旦被黑客在杂错节点上嗅探到,用户就可能会遭到损害。

2、缓冲区溢出攻击及其防范措施:

缓冲区溢出攻击是属于系统攻击的手段,通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,使程序转而执行其它指令,以达到攻击的目的。当然,随便往缓冲区中填东西并不能达到攻击的目的。最常见的手段是通过制造缓冲区溢出使程序运行一个用户shell,再通过shell执行其它命令。如果该程序具有root权限的话,攻击者就可以对系统进行任意操作了。

0条大神的评论

发表评论